INTERSECTION PROBABILITIES FOR FLATS IN HYPERBOLIC SPACE

ERCAN SÖNMEZ

ABSTRACT. Consider the *d*-dimensional hyperbolic space M_K^d of constant curvature K < 0 and fix a point *o* playing the role of an origin. Let **L** be a uniform random *q*-dimensional totally geodesic submanifold (called *q*-flat) in M_K^d passing through *o* and, independently of **L**, let **E** be a random $(d - q + \gamma)$ -flat in M_K^d which is uniformly distributed in the set of all $(d - q + \gamma)$ -flats intersecting a hyperbolic ball of radius u > 0 around *o*. We are intersected in the distribution of the random γ -flat arising as the intersection **E** \cap **L** can be empty with strictly positive probability. We determine this probability and the full distribution of **E** \cap **L**. Thereby, we elucidate crucial differences to the Euclidean case. Moreover, we study the limiting behaviour as $d \uparrow \infty$ and also $K \uparrow 0$. Thereby we obtain a phase transition with three different phases which we completely characterize, including a critical phase with distinctive behavior and a phase recovering the Euclidean results.

[Joint work with Panagiotis Spanos and Christoph Thäle.]

RUHR-UNIVERSITÄT BOCHUM Email address: ercan.Soenmez@rub.de