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Boolean percolation

Let η be a homogeneous Poisson process with intensity λ > 0 in R2. The occupied
region in Boolean percolation is given by ∪x∈ηB1(x).

Naturally gives rise to a random geometric graph.
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Left-right crossing of squares

Goal is to measure ‘sensitivity to noise’ : Do small perturbations in η affect macroscopic
properties such as percolation?

Non-trivial at criticality : ∃ critical parameter λc > 0, such that for λ > λc , ∃ a unique
unbounded occupied component. Fix λ = λc .

Let fL = ±1 indicator of a L-R occupied crossing of WL = [−L, L]2 :

3



Left-right crossing of squares

Goal is to measure ‘sensitivity to noise’ : Do small perturbations in η affect macroscopic
properties such as percolation?

Non-trivial at criticality : ∃ critical parameter λc > 0, such that for λ > λc , ∃ a unique
unbounded occupied component. Fix λ = λc .

Let fL = ±1 indicator of a L-R occupied crossing of WL = [−L, L]2 :

3



Left-right crossing of squares

Goal is to measure ‘sensitivity to noise’ : Do small perturbations in η affect macroscopic
properties such as percolation?

Non-trivial at criticality : ∃ critical parameter λc > 0, such that for λ > λc , ∃ a unique
unbounded occupied component. Fix λ = λc .

Let fL = ±1 indicator of a L-R occupied crossing of WL = [−L, L]2 :

3



Noise stability

To study the sensitivity of a system to random noise, one can measure its stability. For η
the original configuration, let ηε be its ε-noisy version.

Definition: (fL)L>0 is noise stable if

lim
ε→0

sup
L

P {fL(η) ̸= fL(ηε)} = 0.

Captures the situation when fL(ηε) almost completely determines fL(η), uniformly in L, if
ε is small.

We consider the Ornstein-Uhlenbeck dynamics to perturb the system.
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Ornstein Uhlenbeck dynamics

Given marked configuration η, noisy version ηε is given by

ηε = η1 + η2, t > 0,

➢ η1 a thinning of η [delete each point independently w.p. (1 − e−ε)],

➢ η2 an independent Poisson process with intensity (1 − e−ε).

Non-sharp results for dynamical Boolean percolation under the OU dynamics in Ahlberg
et. al. 14, which in particular imply noise instability.

Motivation: Show sharp results for the OU dynamics.
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Sharp noise instability

Sharp noise instability in Boolean percolation (B., Peccati, Yogeshwaran ’24+)

There exists AL → ∞ such that under the OU dynamics, (fL)L>0 exhibits sharp noise
instability at time-scale 1/AL, i.e., for εLAL → 0,

lim
L→∞

P {fL(η) ̸= fL(ηεL)} = 0,

while if εLAL → ∞,
lim inf
L→∞

P {fL(η) ̸= fL(ηεL)} > 0.

We introduce the new notion of spectral point process; a continuum counterpart of
spectral samples in Garban, Pete and Schramm ’10.

Here, one can take AL = L2α4(1, L) → ∞, where α4 is the 4-arm probability.
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4-arm probability : Quasi-multiplicativity

Recall AL = L2α4(1, L) : For 1 ≤ r ≤ R < ∞, α4(r ,R) is the probability of the event

Wr

WR

Quasi-multipicativity of α4 (B., Peccati, Yogeshwaran ’24+)

In critical Boolean percolation,

α4(r1, r3) ≍ α4(r1, r2)α4(r2, r3), 1 ≤ r1 ≤ r2 ≤ r3.
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Voronoi percolation

Given a homogeneous Poisson process with intensity 1 on R2, independently, colour
each cell black or white with probabilities p and 1 − p (marked process η).
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Noise sensitivity

Fix p = 1/2. Consider L-R black crossing functionals fL ∈ {±1} of WL = [−L, L]2.

By symmetry

P1/2(fL(η) = 1) = P1/2(L-R black crossing of WL)

= P1/2(Top-Bottom white crossing of WL) =
1
2
.

For η the original configuration and an ε-noisy version ηε, the system is sensitive when

P1/2(fL(η
ε) = 1|fL(η)) ≈

1
2
.

Definition: (fL)L>0 is noise sensitive (NS) under the dynamics ηε if ∀ ε > 0,

lim
L→∞

Cov(fL(η), fL(ηε)) = 0.
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Frozen dynamics

➢ Sample the unperturbed random configuration according to η ⊂ R2 × {±1}.

➢ Resample the colour of each cell independently, at rate 1 to obtain the ε-noisy version
ηε after time ε > 0.

Sharp NS under frozen dynamics (Vanneuville ’21)

For the critical Voronoi percolation, L2α4(L) → ∞ and under the frozen dynamics,

lim
L→∞

Cov(fL(η), fL(ηεL)) = 0 when εLL2α4(L) → ∞,

while the limit is at least c > 0 for any sequence εL with εLL2α4(L) → 0.

Only non-sharp results by Ahlberg, Baldasso ’18; Last, Peccati, Yogeshwaran ’23 under
the OU dynamics.

10



Frozen dynamics

➢ Sample the unperturbed random configuration according to η ⊂ R2 × {±1}.

➢ Resample the colour of each cell independently, at rate 1 to obtain the ε-noisy version
ηε after time ε > 0.

Sharp NS under frozen dynamics (Vanneuville ’21)

For the critical Voronoi percolation, L2α4(L) → ∞ and under the frozen dynamics,

lim
L→∞

Cov(fL(η), fL(ηεL)) = 0 when εLL2α4(L) → ∞,

while the limit is at least c > 0 for any sequence εL with εLL2α4(L) → 0.

Only non-sharp results by Ahlberg, Baldasso ’18; Last, Peccati, Yogeshwaran ’23 under
the OU dynamics.

10



Frozen dynamics

➢ Sample the unperturbed random configuration according to η ⊂ R2 × {±1}.

➢ Resample the colour of each cell independently, at rate 1 to obtain the ε-noisy version
ηε after time ε > 0.

Sharp NS under frozen dynamics (Vanneuville ’21)

For the critical Voronoi percolation, L2α4(L) → ∞ and under the frozen dynamics,

lim
L→∞

Cov(fL(η), fL(ηεL)) = 0 when εLL2α4(L) → ∞,

while the limit is at least c > 0 for any sequence εL with εLL2α4(L) → 0.

Only non-sharp results by Ahlberg, Baldasso ’18; Last, Peccati, Yogeshwaran ’23 under
the OU dynamics.
10



Sharp noise sensitivity under OU dynamics

Sharp NS under OU dynamics (B., Peccati, Yogeswaran ’24+)

Under the OU dynamics, (fL)L>0 exhibits sharp noise sensitivity (also sharp noise
instability ) at scale 1/L2α4(L), i.e.,

lim
L→∞

Cov(fL(η), fL(ηεL)) = 0 when εLL2α4(L) → ∞,

and the limit is at least c > 0 for any sequence εL with εLL2α4(L) → 0.

We benefit from the sharp NS result by Vanneuville ’21, via a covariance comparison
between the Frozen and the OU dynamics.

For the proof of no noise sensitivity, we study the associated spectral point process.
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Main tool : Concentration of spectral mass

Sensitivity to noise of a Boolean function is naturally encoded in its Fourier spectrum :
High frequency implies sensitivity, while low frequency implies stability.

The crossing functional fL(η) admits a unique chaotic decomposition

fL(η) =
∞∑

k=0

Ik(uk),

where Ik and uk are the multiple Wiener-Itô integral of order k , and the k -th kernel in the
decomposition, respectively. In particular,

1 = E
[
fL(η)2] = ∞∑

k=0

k!∥uk∥2.

For NL with P {NL = k} = k!∥uk∥2, sharp noise instability follows by showing
concentration of NL around ENL ≍ L2α4(1, L).
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Spectral point process

To estimate the first two moments of NL, we construct in a natural way a spectral point
process with NL points.

Given NL = k , obtain the random vector (X (k)
1 , . . . ,X (k)

k ) ∈ Xk following a probability
density proportional to

(x1, . . . , xk) 7→ u 2
k (x1, . . . , xk).

Define the spectral process as

γL(B) :=
NL∑
i=1

δ
X

(NL)
i

(B), B ∈ X .

The size of the spectral process can be neatly related to the number of Pivotal points,
i.e., those x ∈ η such that D−

x fL(η) ̸= 0.
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Further remarks

Our results imply asymptotic Volatility (infinitely many jumps) of the crossing functional fL
over time intervals of length tL ≫ (L2α4(1, L))−1 → 0. Also has implications in critical
windows for phase transition of fL.

It is typically easier to prove sharp noise stability. Showing sharp noise sensitivity under
OU dynamics requires a precise understanding the lower tail of NL : to conclude noise
sensitivity when εL ENL → ∞, it suffices to show that

lim
c→0

lim inf
L→∞

P {NL ≥ c ENL} = 1.

Thank you!
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Pivotal point process

The size of the spectral process can be neatly related to the number of Pivotal points.

The pivotal point process associated with fL and η is given by

PL(B) :=
∑
x∈η

1{D−
x fL(η)̸=0} δx(B), B ∈ X ,

where D−
x fL(η) = fL(η)− fL(η − δx).

These are the points in η which are ‘pivotal’; removing them flips the state of fL.

One can show for all B ∈ X ,

E [|γL(B)|] = 4E [|PL(B)|] = 4
∫

B
P{Dx fL(η) ̸= 0}λ(dx).

15
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Moment estimations

E [|γL(B)|] = 4
∫

B
P{Dx fL ̸= 0}λ(dx).

In particular, ENL = E|γL| ≥ E|γL(WL/2)| ≍ L2α4(1, L/2) ≍ L2α4(1, L).

x

WL

WL/2

Indeed, ENL ≍ L2α4(1, L). A more careful second moment estimate then yields a
desired concentration result in the Boolean model.
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Voronoi: a covariance comparison inequality

Consider the Voronoi percolation model. For ε > 0, let ηε and ηε be the noisy
configurations in the OU and frozen dynamics.

Then

Cov(fL(η), fL(ηε)) ≤ Cov(fL(η), fL(ηε)).

In the same time period, less randomness is introduced in frozen dynamics compared to
the OU dynamics.

Noise sensitivity in the OU dynamics, when εLL2α4(1, L) → ∞, now follows from the
same for the frozen dynamics (Vanneuville ’21).
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Voronoi: no noise sensitivity when εLL2α4(1, L) → 0

Let fL =
∑∞

k=1 Ik(uk). By Mehler’s formula,

E[fL(ηε)|η] =
∞∑

k=1

e−kεIk(uk).

Cov(fL(η), fL(ηε)) = E[fL(η)fL(ηε)]
Orth.
=

∞∑
k=1

e−kεE[Ik(uk)
2]

=
∞∑

k=1

e−kεk!∥uk∥2 = E[e−εNL ]
Jensen
≥ e−εENL .

Since ENL ≍ L2α4(1, L), it follows that fL is not noise sensitive when εLL2α4(1, L) → 0.
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