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The Random Hyperbolic Graph model
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Hyperbolic geometry

Poincaré disc H: unit disc of C equipped with

where g is the Euclidean metric on C
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The Random Hyperbolic Graph model
0O@0000

Coordinates and native representation

For x=(r:60) and y = (s : 8) two points of H
cosh(dy(x, y)) = cosh(r) cosh(s) — sinh(r) sinh(s) cos(6 — ) .

By (s) open ball for distance dy
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The Random Hyperbolic Graph model
[e]e] lelele]

The Random Hyperbolic Graph (RHG)

Fix & > 0 and v > 0, let us define G, ,(n) [KPK110]
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The Random Hyperbolic Graph (RHG)

Fix & > 0 and v > 0, let us define G, ,(n) [KPK110]

n points in the ball By (R,), with R, = 2log(n/v)

Measure p, on By (R,) with radial density:

asinh(ar)
n(r) = ———~——=1,
pa(r) (cosh(aR,) — 1) {r<fa}
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The Random Hyperbolic Graph (RHG)

Fix & > 0 and v > 0, let us define G, ,(n) [KPK110]

n points in the ball By (R,), with R, = 2log(n/v)

Measure p, on By (R,) with radial density:

asinh(ar)
n(r) = ———~——=1,
pa(r) (cosh(aR,) — 1) {r<fa}
(X1, Xo, . .., Xy) i.i.d with distribution i

Edge between X; and X; <= du(X;, Xj) < R,

deg(X) = number of neighbours of X

Ex[deg(X)] = (n = 1)pn (Bx (Ra)) N in r(X)
Bo(Rn

~—
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The Random Hyperbolic Graph model
[e]e]e] lele}

Three different regimes (see [BFM16])

a < 1/2, dense regime,
connected with high proba-
bility (hubs near the centre)

o = 1/2, probability of
connection converges to a
constant

a > 1/2, disconnected with
high probability
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The Random Hyperbolic Graph model
0000e0

For a > 1/2, model for complex networks [AB02]:
@ sparseness [Pet14]
e small world [ABF17]
@ high clustering [CF16, FvdHMS21, GPP12]

o scale-free degree distribution
o [GPP12] Random hyperbolic graphs: degree sequence and clustering
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o scale-free degree distribution
o [GPP12] Random hyperbolic graphs: degree sequence and clustering

Theorem: [GPP12] Power-law with exponent 2« + 1

For « > 1/2 and v, — oo, w.h.p., the maximum degree belongs
to
[n/(22)y—1 g1/, 1

For nd < k< 1;((2;)) w.h.p., the fraction of vertices of degree > k

s (14 0(1))Ca k=2
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For a > 1/2, model for complex networks [AB02]:
@ sparseness [Pet14]
e small world [ABF17]
@ high clustering [CF16, FvdHMS21, GPP12]

o scale-free degree distribution
o [GPP12] Random hyperbolic graphs: degree sequence and clustering

Theorem: [GPP12] Power-law with exponent 2« + 1

For « > 1/2 and v, — oo, w.h.p., the maximum degree belongs
to
[n/(22)y—1 g1/, 1

For nd < k< 1;((2;)) w.h.p., the fraction of vertices of degree > k

s (14 0(1))Ca k=2

Better estimate on maximum/large degrees? For oo < 1/27
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The Random Hyperbolic Graph model
[e]e]e]e]e] J

Notations

Point process of the degrees:

D, = Z 5deg(X;)
i=1

r(X) radius of the node X

Xy, X(2)s - - - » X(n) ordering by increasing radius
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Convergence of maximum degrees
@000

Ordering and convergence of maximum degrees

Theorem: [LG24] Maximum degree in RHGs

For a > 0 and k fixed, with high probability,
deg(X(1)) > deg(X(2)) > - -- > deg(X(x)) > deg(X(j)), Vi>k
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@000

Ordering and convergence of maximum degrees

Theorem: [LG24] Maximum degree in RHGs

For a > 0 and k fixed, with high probability,
deg(X(1)) > deg(X(2)) > --- > deg(X(x)) > deg(X(j)), Vi>k

Moreover, for o < 1/2,

Dp(n— n®+1/2 ) % Nmys  in Mp([0, 00))

For o =1/2, (d)
Da(n =) ———=1im,, in Mp((0,0])
For a > 1/2, (d)
,Dn(nl/(2a) . ) —t 77’773’ in Mp((ovoo])

n— o0

n
Reminder: D, = ) dgeg(x)
i=1
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Convergence of maximum degrees
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Ordering and convergence of maximum degrees

Theorem: [LG24] Maximum degree in RHGs

For a > 0 and k fixed, with high probability,

Moreover, for o < 1/2,

Dp(n — n®+1/2 ) % Nmys 10 Mp([0, 00))

For o« =1/2, @
Dp(n ) o mas in My((0, 00])
For a > 1/2, @
D,,(nl/(%“) ©) —— my, i Mp((0, 00])

n— 00

deg(X(1)) > deg(X(2)) > - - > deg(X(x)) > deg(X(j)), Vi>k

[BS22] Large degrees in scale-free inhomogeneous random graphs

[GPP12] Random hyperbolic graphs: degree sequence and clustering

}a>1/2
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Ordering and convergence of maximum degrees

Theorem: [LG24] Maximum degree in RHGs

For a > 0 and k fixed, with high probability,
deg(X(1)) > deg(X(2)) > - -- > deg(X(x)) > deg(X(j)), Vi>k

In particular, for a < 1/2,

=12 (n — pry D \eibull (2, 1)

n—oo

For a« =1/2, @
n~1Dr> — V(2 arcosh(Exponential (v) 4 1))
n—oo

For a > 1/2, ) @
n~ 2« Dp¥ ——— Fréchet (2a, C,v)

n— o0

[BS22] Large degrees in scale-free inhomogeneous random graphs /
a>1/2
[GPP12] Random hyperbolic graphs: degree sequence and clustering
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Convergence of maximum degrees
0e00

Proof in the case a > 1/2

Theorem: [LG24] Maximum degree in RHGs

For @ > 1/2 and k fixed, with high probability,

deg(X(1)) > deg(X(2)) > - - > deg(X(x)) > deg(X(j)), Vi>k
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Convergence of maximum degrees
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Proof in the case a > 1/2

Theorem: [LG24] Maximum degree in RHGs

For @ > 1/2 and k fixed, with high probability,

deg(X(1)) > deg(X(2)) > - - > deg(X(x)) > deg(X(j)), Vi>k

Point process of the node radii, R, = ) 0,(x))
i=1

(d) .
Rn((l - i)Rn + . ) E) nmsa n MP([O7OO))
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For @ > 1/2 and k fixed, with high probability,

deg(X(1)) > deg(X(2)) > - - > deg(X(x)) > deg(X(j)), Vi>k

Point process of the node radii, R, = ) 0,(x))
i=1

(d) .
Rn((l - i)Rn + . ) E) nmsa n MP([O7OO))

. Estimate of [GPP12]

/"'/,77&\\\ \\ Hn (Bx (Rn)) = Coceir(x)/Z ( + O( (@=2/2)r) +e” X)))
Xaye X2 \

Bo(Rn)
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Convergence of maximum degrees
0e00

Proof in the case a > 1/2

Theorem: [LG24] Maximum degree in RHGs

For @ > 1/2 and k fixed, with high probability,

deg(X(1)) > deg(X(2)) > - - > deg(X(x)) > deg(X(j)), Vi>k

Point process of the node radii, R, = ) 0,(x))
i=1

(d) .
Rn((l - i)Rn + . ) E) nmsa n MP([O7OO))

Estimate of [GPP12]
L (Bx (Rn)) _ Cae—r(x)/Z ( + O( (a—1/2)r(x) +e x)))
By Chernoff bounds

P [deg(X(l)) < deg(X(Q))} < exp (7n1/(20¢)+o(1))
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Convergence of maximum degrees
[e]e] Ie]

Proof in the case a > 1/2

Theorem: [LG24] Maximum degree in RHGs

For o > 1/2 and k fixed, with high probability,
deg(X(1)) > deg(X(2)) > - - > deg(X(x)) > deg(X()), Vi>k
Moreover

Dn(nl/(2a) ) &) Nms, 1IN Mp((0, 00])

n— o0

(deg(X(1)), - - -, deg(X(x))) concentrate on there conditional expectations

]EX(f) [deg(X(,-))] ~ ”Nn(BX(f) (Rn)) ~ Cane™"X0)/2

(d) o (d)
Ro((L= 2)Rot )~ Ds gy, o D0 ) Dy

n—oo
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Convergence of maximum degrees

[e]e]e] ]

What about the other regimes in a7

For a < 1/2,

1
Rn(n_§(1—2a) ) L Nmgs in Mp([0, 00))

n—oo

For a =1/2,

R ) =2 D, in My([0, 50))

n—oo

For a > 1/2,
d .
Ro((1 = Z)Ro+ +) =2 i, in Mp([0, 50)
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Ordering of large degree nodes

@0000

Ordering of the nodes?

Vi >k
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Ordering of large degree nodes
[¢] lele]e}

Ordering up to a polynomial rank (scale free regime)

Let us fix a > 7%@ ~ 0.8 and v, — oco. Define

1
Be = 1+ 8a and  k, == n’/log(n)*®

Theorem: [LG24+]

For a > %, with high probability,
deg(X(l)) > deg(X(2)) > 000 > deg(X(kn)) > deg(X(,-)), Vi > k,
and there exists i € [n%, nPv,] such that

deg(X(,)) < deg(X(,-+1))
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Ordering of large degree nodes
[e]e] le]e}

Proof sketch: ordering up to k,

Theorem: [LG24+]

For a > %, with high probability,

deg(X(1)) > deg(X(p)) > - -+ > deg(X(,)) > deg(X(j)), Vi > kn
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Proof sketch: ordering up to k,

Theorem: [LG24+]

For a > %, with high probability,

deg(X(1)) > deg(X(p)) > - -+ > deg(X(,)) > deg(X(j)), Vi > kn

W, = Nen (Bx(k) (Rn)) ~ Cocne*’(x(k))/2
A= (X)) — r(Xwy)
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For a > %, with high probability,

deg(X(1)) > deg(X(p)) > - -+ > deg(X(,)) > deg(X(j)), Vi > kn

W, = Nen (Bx(k) (Rn)) ~ Cocne*’(x(k))/2
A= (X)) — r(Xwy)

Using Chernoff bounds, we get

2
P (X0 < det(Xn)] < o0 (- Gth (1= %))

< exp (—Cg WkAi)
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Ordering of large degree nodes
[e]e] le]e}

Proof sketch: ordering up to k,

Theorem: [LG24+]

For a > %, with high probability,

deg(X(1)) > deg(X(p)) > - -+ > deg(X(,)) > deg(X(j)), Vi > kn

W, = Nen (Bx(k) (Rn)) ~ Cocne*’(x(k))/2
A= (X)) — r(Xwy)

Using Chernoff bounds, we get

Pxy, Xesn) [deg(X(x)) < deg(X(k11))] < exp (*Cl W (1 - %)2)
< exp (—Cg WkAi)
~~ choose kj such that w.h.p., for all k < kj,
exp (-G WkAi) =o(1/n)
By a union bound,
P [deg(X(l)) > deg(Xp)) > -+ > deg(X(kn))} =1—o(ks/n) —o(1)
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Ordering of large degree nodes
[e]e]e] lo}

Proof sketch: no ordering after n’

Theorem: [LG24+]

W.h.p., 3k € [nPc, nfev,], deg(X(x)) < deg(X(k+1))

Reminder: Wy = njn (Bx(k) (R,,)) L Ak = (X)) — r(X)
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Ordering of large degree nodes
[e]e]e] lo}

Proof sketch: no ordering after n’

Theorem: [LG24+]

W.h.p., 3k € [nPc, nfev,], deg(X(x)) < deg(X(k+1))

Reminder: W = njn (Bx(k) (R,,)) L Ak = (X)) — r(X)
W.h.p, more than Cjv, indices k € [n*BC, nPe vp] sat-
isfy
Wi A2 < 61.
This can be rewritten
Wi = Wier1 < 62 Varx, ) (deg(X(k+1)))s
which implies

BO(Rn)
PX iy Xher1) [deg(X(k+1)) > Wil > 63.
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Ordering of large degree nodes
[e]e]e] lo}

Proof sketch: no ordering after n’

Theorem: [LG24+]

W.h.p., 3k € [nPc, nfev,], deg(X(x)) < deg(X(k+1))

Reminder: Wy = njn (Bx(k) (R,,)) L Ak = (X)) — r(X)

]PX(k);X(kH) [dega(x(k+1)) > Wil >4

+ disjoint condition after (1 — )R, (for all points)
* X

Xk+1)®

S~ (1—¢)R, -7

e-influence zone
~ deg,

W.h.p, we can find Cyv, indices k € [nBC, nBe Vn] s.t.
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Proof sketch: no ordering after n’

Theorem: [LG24+]

W.h.p., 3k € [nPc, nfev,], deg(X(x)) < deg(X(k+1))

Reminder: Wy = njn (Bx(k) (R,,)) L Ak = (X)) — r(X)

]PX(k); (k+1) [dega(x(k+1)) > Wﬂ >4

+ disjoint condition after (1 — )R, (for all points)
* X

\ Xk+1)®

s

S ()R, 7 ~> W.h.p, there exists k € [nﬁc7 nBe vy], such that
ST -

deg, (X(k)) < deg.(X(k1))

e-influence zone
~ deg,

W.h.p, we can find Cyv, indices k € [nBC, nBe Vn] s.t.
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Thank you for your attention!
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