Ordering and Convergence of Large Degrees in Random Hyperbolic Graphs

Loïc Gassmann

University of Fribourg, Switzerland

1 The Random Hyperbolic Graph model

2 Convergence of maximum degrees

3 Ordering of large degree nodes

Hyperbolic geometry

Poincaré disc \mathbb{H} : unit disc of \mathbb{C} equipped with

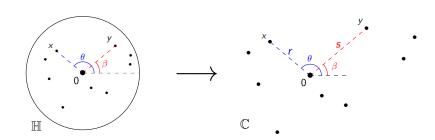
$$\boldsymbol{g}_{\mathbb{H}} \coloneqq \frac{4\boldsymbol{g}_{\mathbb{C}}}{(1-|w|^2)^2} \,, \quad \text{where } \boldsymbol{g}_{\mathbb{C}} \text{ is the Euclidean metric on } \mathbb{C}$$

 $ightarrow d_{\mathbb{H}}$ Riemannian distance

Coordinates and native representation

The Random Hyperbolic Graph model

000000

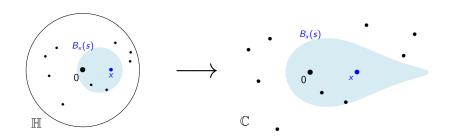


For
$$x=(r:\theta)$$
 and $y=(s:\beta)$ two points of \mathbb{H}
$$\cosh(d_{\mathbb{H}}(x,y))=\cosh(r)\cosh(s)-\sinh(r)\sinh(s)\cos(\theta-\beta)\,.$$

 $\mathcal{B}_{\times}(s)$ open ball for distance $d_{\mathbb{H}}$

000000

Coordinates and native representation



For
$$x=(r:\theta)$$
 and $y=(s:\beta)$ two points of \mathbb{H}
$$\cosh(d_{\mathbb{H}}(x,y))=\cosh(r)\cosh(s)-\sinh(r)\sinh(s)\cos(\theta-\beta)\,.$$

 $\mathcal{B}_{x}(s)$ open ball for distance $d_{\mathbb{H}}$

The Random Hyperbolic Graph model

000000

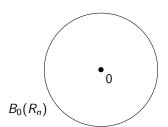
Fix $\alpha > 0$ and $\nu > 0$, let us define $\mathcal{G}_{\alpha,\nu}(n)$ [KPK⁺10]

The Random Hyperbolic Graph model

000000

Fix $\alpha > 0$ and $\nu > 0$, let us define $\mathcal{G}_{\alpha,\nu}(n)$ [KPK⁺10]

n points in the ball $\mathcal{B}_0(R_n)$, with $R_n := 2\log(n/\nu)$



The Random Hyperbolic Graph (RHG)

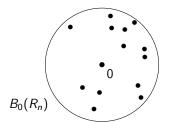
Fix $\alpha > 0$ and $\nu > 0$, let us define $\mathcal{G}_{\alpha,\nu}(n)$ [KPK⁺10]

n points in the ball $\mathcal{B}_0(R_n)$, with $R_n := 2\log(n/\nu)$

Measure μ_n on $\mathcal{B}_0(R_n)$ with radial density:

$$\rho_n(r) \coloneqq \frac{\alpha \sinh(\alpha r)}{(\cosh(\alpha R_n) - 1)} \mathbf{1}_{\{r < R_n\}}$$

 (X_1, X_2, \dots, X_n) i.i.d with distribution μ_n



000000

The Random Hyperbolic Graph (RHG)

Fix $\alpha > 0$ and $\nu > 0$, let us define $\mathcal{G}_{\alpha,\nu}(n)$ [KPK⁺10]

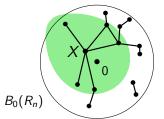
n points in the ball $\mathcal{B}_0(R_n)$, with $R_n := 2\log(n/\nu)$

Measure μ_n on $\mathcal{B}_0(R_n)$ with radial density:

$$\rho_n(r) := \frac{\alpha \sinh(\alpha r)}{(\cosh(\alpha R_n) - 1)} \mathbf{1}_{\{r < R_n\}}$$

 (X_1, X_2, \dots, X_n) i.i.d with distribution μ_n

Edge between X_i and $X_i \iff d_{\mathbb{H}}(X_i, X_i) < R_n$



The Random Hyperbolic Graph (RHG)

The Random Hyperbolic Graph model

000000

Fix $\alpha > 0$ and $\nu > 0$, let us define $\mathcal{G}_{\alpha,\nu}(n)$ [KPK⁺10]

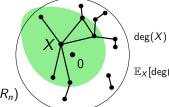
n points in the ball $\mathcal{B}_0(R_n)$, with $R_n := 2\log(n/\nu)$

Measure μ_n on $\mathcal{B}_0(R_n)$ with radial density:

$$\rho_n(r) := \frac{\alpha \sinh(\alpha r)}{(\cosh(\alpha R_n) - 1)} \mathbf{1}_{\{r < R_n\}}$$

 (X_1, X_2, \dots, X_n) i.i.d with distribution μ_n

Edge between X_i and $X_i \iff d_{\mathbb{H}}(X_i, X_i) < R_n$

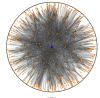


deg(X) = number of neighbours of X

 $\mathbb{E}_{X}[\deg(X)] = (n-1)\mu_{n}\left(\mathcal{B}_{X}\left(R_{n}\right)\right) \setminus \text{in } r(X)$

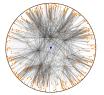
Three different regimes (see [BFM16])

000000



 α < 1/2, dense regime, connected with high probability (hubs near the centre)

 $\alpha = 1/2$, probability of connection converges to a constant



 $\alpha > 1/2$, disconnected with high probability

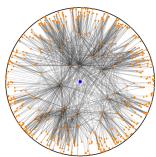
For $\alpha > 1/2$, model for complex networks [AB02]:

sparseness [Pet14]

The Random Hyperbolic Graph model

000000

- small world [ABF17]
- high clustering [CF16, FvdHMS21, GPP12]
- scale-free degree distribution
 - [GPP12] Random hyperbolic graphs: degree sequence and clustering



sparseness [Pet14]

000000

- small world [ABF17]
- high clustering [CF16, FvdHMS21, GPP12]
- scale-free degree distribution
 - [GPP12] Random hyperbolic graphs: degree sequence and clustering

Theorem: [GPP12] Power-law with exponent $2\alpha + 1$

For $\alpha > 1/2$ and $\nu_n \to \infty$, w.h.p., the maximum degree belongs to $[n^{1/(2\alpha)}v_n^{-1}, n^{1/(2\alpha)}v_n]$

For $n^\delta \leq k \leq \frac{n^{1/(2\alpha)}}{\log(n)}$, w.h.p., the fraction of vertices of degree $\geq k$ $(1+o(1))C_{\alpha.\nu}k^{-2\alpha}$

For $\alpha > 1/2$, model for complex networks [AB02]:

sparseness [Pet14]

The Random Hyperbolic Graph model

000000

- small world [ABF17]
- high clustering [CF16, FvdHMS21, GPP12]
- scale-free degree distribution
 - [GPP12] Random hyperbolic graphs: degree sequence and clustering

Theorem: [GPP12] Power-law with exponent $2\alpha + 1$

For $\alpha > 1/2$ and $\nu_n \to \infty$, w.h.p., the maximum degree belongs to $[n^{1/(2\alpha)}v_n^{-1}, n^{1/(2\alpha)}v_n]$

For $n^\delta \le k \le \frac{n^{1/(2\alpha)}}{\log(n)}$, w.h.p., the fraction of vertices of degree $\ge k$ $(1 + o(1))C_{\alpha,\nu}k^{-2\alpha}$

Better estimate on maximum/large degrees? For $\alpha \leq 1/2$?

Notations

Point process of the degrees:

$$\mathcal{D}_n \coloneqq \sum_{i=1}^n \delta_{\deg(X_i)}$$

r(X) radius of the node X

 $X_{(1)}, X_{(2)}, \dots, X_{(n)}$ ordering by increasing radius

Theorem: [LG24] Maximum degree in RHGs

For $\alpha > 0$ and k fixed, with high probability,

$$\deg(X_{(1)}) > \deg(X_{(2)}) > \dots > \deg(X_{(k)}) > \deg(X_{(i)}), \quad \forall i > k$$

Theorem: [LG24] Maximum degree in RHGs

For $\alpha > 0$ and k fixed, with high probability,

$$\deg(X_{(1)}) > \deg(X_{(2)}) > \dots > \deg(X_{(k)}) > \deg(X_{(i)}), \quad \forall i > k$$

Moreover, for $\alpha < 1/2$,

$$\mathcal{D}_n(n-n^{\alpha+1/2}\cdot)\xrightarrow[n\to\infty]{(d)}\eta_{m_1},\quad \text{in }M_p([0,\infty))$$

For
$$\alpha=1/2$$
,
$$\mathcal{D}_n(n\cdot) \xrightarrow[n\to\infty]{(d)} \eta_{m_2}, \quad \text{in } M_p((0,\infty])$$

For
$$\alpha > 1/2$$
,
$$\mathcal{D}_n(n^{1/(2\alpha)} \cdot) \xrightarrow[n \to \infty]{(d)} \eta_{m_3}, \quad \text{in } M_p((0, \infty])$$

Reminder: $\mathcal{D}_n \coloneqq \sum_{i=1}^n \delta_{\deg(X_i)}$

Convergence of maximum degrees

Theorem: [LG24] Maximum degree in RHGs

For $\alpha > 0$ and k fixed, with high probability,

$$\deg(X_{(1)}) > \deg(X_{(2)}) > \cdots > \deg(X_{(k)}) > \deg(X_{(i)}), \quad \forall i > k$$

Moreover, for $\alpha < 1/2$,

$$\mathcal{D}_n(n-n^{\alpha+1/2}\cdot)\xrightarrow[n\to\infty]{(d)}\eta_{m_1},\quad \text{in } M_p([0,\infty))$$

For
$$\alpha = 1/2$$
,
$$\mathcal{D}_n(n \cdot) \xrightarrow[n \to \infty]{(d)} \eta_{m_2}, \quad \text{in } M_p((0, \infty])$$

For
$$\alpha > 1/2$$
, $\mathcal{D}_n(n^{1/(2\alpha)} \cdot) \xrightarrow[n \to \infty]{(d)} \eta_{m_3}$, in $M_p((0, \infty])$

[BS22] Large degrees in scale-free inhomogeneous random graphs

 $\alpha > 1/2$ [GPP12] Random hyperbolic graphs: degree sequence and clustering

Convergence of maximum degrees

Theorem: [LG24] Maximum degree in RHGs

For $\alpha > 0$ and k fixed, with high probability,

$$\deg(X_{(1)}) > \deg(X_{(2)}) > \cdots > \deg(X_{(k)}) > \deg(X_{(i)}), \quad \forall i > k$$

In particular, for $\alpha < 1/2$,

$$n^{-(\alpha+1/2)}(n-D_n^{\max}) \xrightarrow[n\to\infty]{(d)} \text{Weibull } (2,\pi^{-1}\nu^{-\alpha})$$

For
$$\alpha = 1/2$$
, $n^{-1}D_n^{\max} \xrightarrow[n \to \infty]{(d)} V(2\operatorname{arcosh}(\operatorname{Exponential}(\nu) + 1))$

For
$$\alpha > 1/2$$
,
$$n^{-\frac{1}{2\alpha}}D_n^{\max} \xrightarrow[n \to \infty]{(d)} \mathsf{Fr\'echet}\left(2\alpha, \mathit{C}_\alpha\nu\right)$$

[BS22] Large degrees in scale-free inhomogeneous random graphs

[GPP12] Random hyperbolic graphs: degree sequence and clustering

Convergence of maximum degrees

Theorem: [LG24] Maximum degree in RHGs

For $\alpha > 0$ and k fixed, with high probability,

$$\deg(X_{(1)}) > \deg(X_{(2)}) > \dots > \deg(X_{(k)}) > \deg(X_{(i)}), \quad \forall i > k$$

Moreover, for $\alpha < 1/2$,

$$\mathcal{D}_n(n-n^{\alpha+1/2}\cdot)\xrightarrow[n\to\infty]{(d)}\eta_{m_1},\quad \text{in }M_p([0,\infty))$$

For
$$\alpha = 1/2$$
,
$$\mathcal{D}_n(n \cdot) \xrightarrow[n \to \infty]{(d)} \eta_{m_2}, \quad \text{in } M_p((0, \infty])$$

For
$$\alpha > 1/2$$
, $\mathcal{D}_n(n^{1/(2\alpha)} \cdot) \xrightarrow[n \to \infty]{(d)} \eta_{m_3}$, in $M_p((0, \infty])$

[BS22] Large degrees in scale-free inhomogeneous random graphs

 $\alpha > 1/2$

[GPP12] Random hyperbolic graphs: degree sequence and clustering

Theorem: [LG24] Maximum degree in RHGs

For $\alpha > 1/2$ and k fixed, with high probability,

$$\deg(X_{(1)}) > \deg(X_{(2)}) > \dots > \deg(X_{(k)}) > \deg(X_{(i)}), \quad \forall i > k$$

Theorem: [LG24] Maximum degree in RHGs

For $\alpha > 1/2$ and k fixed, with high probability,

$$\deg(X_{(1)}) > \deg(X_{(2)}) > \dots > \deg(X_{(k)}) > \deg(X_{(i)}), \quad \forall i > k$$

Point process of the node radii, $\mathcal{R}_n := \sum_{i=1}^n \delta_{r(X_i)}$

$$\mathcal{R}_n((1-rac{1}{2lpha})R_n+\ \cdot\) \xrightarrow[n o \infty]{(d)} \eta_{m_6}, \quad ext{in } M_p([0,\infty))$$

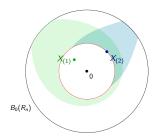
Theorem: [LG24] Maximum degree in RHGs

For $\alpha > 1/2$ and k fixed, with high probability,

$$\deg(X_{(1)}) > \deg(X_{(2)}) > \cdots > \deg(X_{(k)}) > \deg(X_{(i)}), \quad \forall i > k$$

Point process of the node radii, $\mathcal{R}_n \coloneqq \sum\limits_{i=1}^n \delta_{r(X_i)}$

$$\mathcal{R}_n((1-rac{1}{2lpha})R_n+\ \cdot\) \xrightarrow[n o \infty]{(d)} \eta_{m_6}, \quad \text{in } M_p([0,\infty))$$



Estimate of [GPP12]

$$\mu_n(\mathcal{B}_x(R_n)) = C_\alpha e^{-r(x)/2} \left(1 + O(e^{-(\alpha - 1/2)r(x)} + e^{-r(x)}) \right)$$

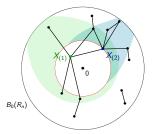
Theorem: [LG24] Maximum degree in RHGs

For $\alpha > 1/2$ and k fixed, with high probability,

$$\deg(X_{(1)}) > \deg(X_{(2)}) > \cdots > \deg(X_{(k)}) > \deg(X_{(i)}), \quad \forall i > k$$

Point process of the node radii, $\mathcal{R}_n \coloneqq \sum\limits_{i=1}^n \delta_{r(X_i)}$

$$\mathcal{R}_n((1-rac{1}{2lpha})R_n+\ \cdot\) \xrightarrow[n o \infty]{(d)} \eta_{m_6}, \quad ext{in } M_p([0,\infty))$$



Estimate of [GPP12]

$$\mu_n(\mathcal{B}_x(R_n)) = C_{\alpha}e^{-r(x)/2}\left(1 + O(e^{-(\alpha-1/2)r(x)} + e^{-r(x)})\right)$$

By Chernoff bounds

$$\mathbb{P}\left[\deg(X_{(1)}) \leq \deg(X_{(2)})\right] \leq \exp\left(-n^{1/(2\alpha) + o(1)}\right)$$

Theorem: [LG24] Maximum degree in RHGs

For $\alpha > 1/2$ and k fixed, with high probability,

$$\deg(X_{(1)}) > \deg(X_{(2)}) > \cdots > \deg(X_{(k)}) > \deg(X_{(i)}), \quad \forall i > k$$

Moreover

$$\mathcal{D}_n(n^{1/(2\alpha)}\cdot)\xrightarrow[n\to\infty]{(d)}\eta_{m_3},\quad \text{in }M_p((0,\infty])$$

 $(\deg(X_{(1)}),\ldots,\deg(X_{(k)}))$ concentrate on there conditional expectations

$$\mathbb{E}_{X_{(i)}}[\deg(X_{(i)})] \sim n\mu_n(\mathcal{B}_{X_{(i)}}(R_n)) \sim C_{\alpha}ne^{-r(X_{(i)})/2}$$

$$\mathcal{R}_n((1-\frac{1}{2\alpha})R_n+\ \cdot\)\xrightarrow[n\to\infty]{(d)}\eta_{m_6}\quad \leadsto\quad \mathcal{D}_n(n^{1/(2\alpha)}\ \cdot\)\xrightarrow[n\to\infty]{(d)}\eta_{m_3}$$

What about the other regimes in α ?

For
$$\alpha < 1/2$$
,

$$\mathcal{R}_n(n^{-rac{1}{2}(1-2lpha)}\cdot)\xrightarrow[n o\infty]{(d)}\eta_{m_4}, \ ext{in} \ M_p([0,\infty))$$

For
$$\alpha = 1/2$$
,

$$\mathcal{R}_n(\,\cdot\,) \xrightarrow[n \to \infty]{(d)} \eta_{m_5}, \text{ in } M_p([0,\infty))$$

For $\alpha > 1/2$,

$$\mathcal{R}_n((1-\frac{1}{2\alpha})R_n+\cdot)\xrightarrow[n\to\infty]{(d)}\eta_{m_6}, \text{ in } M_p([0,\infty))$$

Ordering of the nodes?

$$\deg(X_{(1)}) > \deg(X_{(2)}) > \cdots > \deg(X_{(k)}) > \deg(X_{(i)}), \quad \forall i > k$$

Ordering up to a polynomial rank (scale free regime)

Let us fix $\alpha > \frac{7+\sqrt{33}}{16} \approx 0.8$ and $v_n \to \infty$. Define

$$\beta_c := \frac{1}{1 + 8\alpha} \quad \text{and} \quad k_n := n^{\beta_c} / \log(n)^{2\alpha}$$

Theorem: [LG24+]

For $\alpha > \frac{7+\sqrt{33}}{16}$, with high probability,

$$\deg(X_{(1)}) > \deg(X_{(2)}) > \dots > \deg(X_{(k_n)}) > \deg(X_{(i)}), \ \forall i > k_n$$

and there exists $i \in [n^{\beta_c}, n^{\beta_c} v_n]$ such that

$$\deg(X_{(i)}) < \deg(X_{(i+1)})$$

Theorem: [LG24+]

For $\alpha > \frac{7+\sqrt{33}}{16}$, with high probability,

$$\deg(X_{(1)})>\deg(X_{(2)})>\cdots>\deg(X_{(k_n)})>\deg(X_{(i)}),\;\forall i>k_n$$

Theorem: [LG24+]

For $\alpha > \frac{7+\sqrt{33}}{16}$, with high probability,

$$\deg(X_{(1)}) > \deg(X_{(2)}) > \cdots > \deg(X_{(k_n)}) > \deg(X_{(i)}), \ \forall i > k_n$$

$$W_k := n\mu_n \left(\mathcal{B}_{X_{(k)}} \left(R_n \right) \right) \sim C_{\alpha} n e^{-r(X_{(k)})/2}$$

$$\Delta_k := r(X_{(k+1)}) - r(X_{(k)})$$

Theorem: [LG24+]

For $\alpha > \frac{7+\sqrt{33}}{16}$, with high probability,

$$\deg(X_{(1)}) > \deg(X_{(2)}) > \cdots > \deg(X_{(k_n)}) > \deg(X_{(i)}), \ \forall i > k_n$$

$$W_k := n\mu_n \left(\mathcal{B}_{X_{(k)}} \left(R_n \right) \right) \sim C_{\alpha} n e^{-r(X_{(k)})/2}$$

$$\Delta_k := r(X_{(k+1)}) - r(X_{(k)})$$

Using Chernoff bounds, we get

$$\mathbb{P}_{X_{(k)}, X_{(k+1)}} \left[\deg(X_{(k)}) \le \deg(X_{(k+1)}) \right] \le \exp\left(-C_1 W_k \left(1 - \frac{W_{k+1}}{W_k} \right)^2 \right)$$

$$\le \exp\left(-C_2 W_k \Delta_k^2 \right)$$

Theorem: [LG24+]

For
$$\alpha>\frac{7+\sqrt{33}}{16}$$
, with high probability,
$$\deg(X_{(1)})>\deg(X_{(2)})>\cdots>\deg(X_{(k_n)})>\deg(X_{(i)}),\ \forall i>k_n$$

$$W_k := n\mu_n\left(\mathcal{B}_{X_{(k)}}\left(R_n\right)\right) \sim C_{\alpha} n e^{-r(X_{(k)})/2}$$

$$\Delta_k := r(X_{(k+1)}) - r(X_{(k)})$$

Using Chernoff bounds, we get

$$\mathbb{P}_{X_{(k)}, X_{(k+1)}} \left[\deg(X_{(k)}) \le \deg(X_{(k+1)}) \right] \le \exp\left(-C_1 W_k \left(1 - \frac{W_{k+1}}{W_k} \right)^2 \right)$$

$$\le \exp\left(-C_2 W_k \Delta_k^2 \right)$$

 \rightsquigarrow choose k_n such that w.h.p., for all $k \leq k_n$,

$$\exp\left(-C_2W_k\Delta_k^2\right) = o(1/n)$$

By a union bound,

$$\mathbb{P}\left[\deg(X_{(1)})>\deg(X_{(2)})>\cdots>\deg(X_{(k_n)})\right]=1-o(k_n/n)-o(1)$$

Theorem: [LG24+]

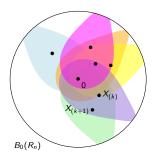
$$\mathsf{W.h.p.,} \ \exists k \in [n^{\beta_c}, n^{\beta_c} \mathit{v_n}], \ \deg(\mathit{X}_{(k)}) < \deg(\mathit{X}_{(k+1)})$$

Reminder:
$$W_k := n\mu_n\left(\mathcal{B}_{X_{(k)}}\left(R_n\right)\right), \quad \Delta_k := r(X_{(k+1)}) - r(X_{(k)})$$

Theorem: [LG24+]

W.h.p.,
$$\exists k \in [n^{\beta_c}, n^{\beta_c} v_n], \deg(X_{(k)}) < \deg(X_{(k+1)})$$

Reminder:
$$W_k := n\mu_n \left(\mathcal{B}_{X_{(k)}} \left(R_n \right) \right), \quad \Delta_k := r(X_{(k+1)}) - r(X_{(k)})$$



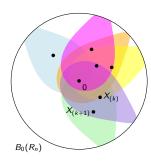
W.h.p, more than $C_1 v_n$ indices $k \in [n^{\beta_c}, n^{\beta_c} v_n]$ satisfy

$$W_k \Delta_k^2 \leq \delta_1$$
.

Theorem: [LG24+]

W.h.p.,
$$\exists k \in [n^{\beta_c}, n^{\beta_c} v_n], \deg(X_{(k)}) < \deg(X_{(k+1)})$$

Reminder:
$$W_k := n\mu_n\left(\mathcal{B}_{X_{(k)}}\left(R_n\right)\right), \quad \Delta_k := r(X_{(k+1)}) - r(X_{(k)})$$



W.h.p, more than C_1v_n indices $k \in [n^{\beta_c}, n^{\beta_c}v_n]$ satisfy

$$W_k \Delta_k^2 \leq \delta_1$$
.

This can be rewritten

$$W_k - W_{k+1} \le \delta_2 \operatorname{Var}_{X_{(k+1)}}(\deg(X_{(k+1)})),$$

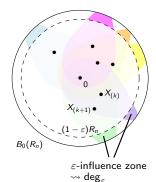
which implies

$$\mathbb{P}_{X_{(k)},X_{(k+1)}}\left[\deg(X_{(k+1)})>W_k\right]\geq \delta_3.$$

Theorem: [LG24+]

W.h.p.,
$$\exists k \in [n^{\beta_c}, n^{\beta_c} v_n], \deg(X_{(k)}) < \deg(X_{(k+1)})$$

Reminder:
$$W_k := n\mu_n \left(\mathcal{B}_{X_{(k)}} \left(R_n \right) \right), \quad \Delta_k := r(X_{(k+1)}) - r(X_{(k)})$$



W.h.p, we can find C_2v_n indices $k \in [n^{\beta_c}, n^{\beta_c}v_n]$ s.t.

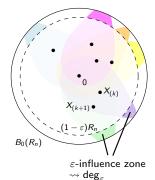
$$\mathbb{P}_{X_{(k)},X_{(k+1)}}\left[\mathsf{deg}_{arepsilon}(X_{(k+1)})>W_k^{arepsilon}
ight]\geq \delta$$

+ disjoint condition after $(1 - \varepsilon)R_n$ (for all points)

Theorem: [LG24+]

W.h.p.,
$$\exists k \in [n^{\beta_c}, n^{\beta_c} v_n], \deg(X_{(k)}) < \deg(X_{(k+1)})$$

Reminder:
$$W_k := n\mu_n \left(\mathcal{B}_{X_{(k)}} \left(R_n \right) \right), \quad \Delta_k := r(X_{(k+1)}) - r(X_{(k)})$$



W.h.p, we can find C_2v_n indices $k \in [n^{\beta_c}, n^{\beta_c}v_n]$ s.t.

$$\mathbb{P}_{X_{(k)},X_{(k+1)}}\left[\deg_{\varepsilon}(X_{(k+1)})>W_k^{\varepsilon}
ight]\geq \delta$$

+ disjoint condition after $(1 - \varepsilon)R_n$ (for all points)

 \rightsquigarrow W.h.p, there exists $k \in [n^{\beta_c}, n^{\beta_c} v_n]$, such that

$$\deg_{\varepsilon}(X_{(k)}) < \deg_{\varepsilon}(X_{(k+1)})$$

Thank you for your attention!

References I

Réka Albert and Albert-László Barabási.

Statistical mechanics of complex networks.

Rev. Modern Phys., 74(1):47-97, 2002.

Mohammed Amin Abdullah, Michel Bode, and Nikolaos Fountoulakis.

Typical distances in a geometric model for complex networks. Internet Math., page 38, 2017.

Michel Bode, Nikolaos Fountoulakis, and Tobias Müller.

The probability of connectivity in a hyperbolic model of complex networks.

Random Structures Algorithms, 49(1):65-94, 2016.

Chinmoy Bhattacharjee and Matthias Schulte.

Large degrees in scale-free inhomogeneous random graphs.

The Annals of Applied Probability, 32(1):696 – 720, 2022.

References II

Elisabetta Candellero and Nikolaos Fountoulakis. Clustering and the hyperbolic geometry of complex networks. *Internet Math.*, 12(1-2):2–53, 2016.

Nikolaos Fountoulakis, Pim van der Hoorn, Tobias Müller, and Markus Schepers.

Clustering in a hyperbolic model of complex networks. *Electron. J. Probab.*, 26:Paper No. 13, 132, 2021.

Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. Random hyperbolic graphs: Degree sequence and clustering. In Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Wattenhofer, editors, *Automata, Languages, and Programming*, pages 573–585, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

References III

Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguñá.

Hyperbolic geometry of complex networks.

Phys. Rev. E (3), 82(3):036106, 18, 2010.

Ueli Peter.

Random graph models for complex systems.

PhD thesis, ETH Zürich, 2014.