A decentralised diagnosis method with probabilistic cellular automata

Irène Marcovici Joint work with Nazim Fatès and Régine Marchand

Laboratoire de Mathématiques Raphaël Salem, Université de Rouen Normandie

GrHyDy 2024 October 23, 2024

[First rule \(isotropic\)](#page-14-0)

- 3 [A little digression: bootstrap percolation](#page-21-0)
- 4 [Second rule \(directional\)](#page-53-0)

Distributed network, made of interconnected components that interact with their neighbours.

- Distributed network, made of interconnected components that interact with their neighbours.
- The components can be subject to failures.

• When the density of failures is below a given threshold, some components should still operate in the neutral state.

• When the density of failures is below a given threshold, some components should still operate in the neutral state.

- When the density of failures is below a given threshold, some components should still operate in the neutral state.
- When the density is beyond this threshold, all the components should be in the alert state.

Aim: give the entities a set of instructions to achieve this.

The goal is to gather a global information by exchanging only local information (consensus-building $/$ self-organization).

Aim: give the entities a set of instructions to achieve this.

The goal is to gather a global information by exchanging only local information (consensus-building / self-organization).

Difficulties:

- it is not possible to centralize information (entities all play the same role),
- conventional counting techniques cannot be used (entities have a limited memory).

Lattice \mathbb{Z}^2 , on which each cell can be in 3 possible states:

- N : neutral.
- \bullet D : defect (it is a fixed state),
- A : alert.

Objective

Find the simplest possible local rule such that, starting from an initial config. with N and D (indep.), state A invades the grid iff the density of D exceeds a certain threshold (which we would like to be able to choose).

Let S be a finite set, and $d \geq 1$.

A function $F:S^{\mathbb{Z}^d}\to S^{\mathbb{Z}^d}$ is a **cellular automaton** if there exists a finite neighbourhood $\mathcal{N}\subset\mathbb{Z}^{d}$ a local function $f:S^{\mathcal{N}}\rightarrow S$ such that :

∀x ∈ S Z d , ∀k ∈ Z d , F(x)^k = f ((xk+i)i∈N). ? ? ? ? ? ? ? x ? ? ? ? ? ? ? f · · · · · · · · · F(x) = · · · x =

 $S = \{\Box, \blacksquare\}, \mathcal{N} = \{-1, 0, 1\}$

Let S be a finite set, and $d \geq 1$.

A function $F:S^{\mathbb{Z}^d}\to S^{\mathbb{Z}^d}$ is a **cellular automaton** if there exists a finite neighbourhood $\mathcal{N}\subset\mathbb{Z}^{d}$ a local function $f:S^{\mathcal{N}}\rightarrow S$ such that :

$$
\forall x \in S^{\mathbb{Z}^d}, \ \forall k \in \mathbb{Z}^d, \quad F(x)_k = f((x_{k+i})_{i \in \mathcal{N}}).
$$

$$
F(x) = \cdots \underbrace{\text{array}} \underbrace{\text{array}} \underbrace{\text{array}} \text{array}}{\text{array}} \underbrace{\text{array}} \underbrace{\text{array}} \text{array}} \text{array}} \cdots
$$

$$
x = \cdots \underbrace{\text{array}} \text{array}} \text{array}
$$

$$
S = \{\Box, \blacksquare\}, \ \mathcal{N} = \{-1, 0, 1\}
$$

Let S be a finite set, and $d \geq 1$.

A function $F:S^{\mathbb{Z}^d}\to S^{\mathbb{Z}^d}$ is a **cellular automaton** if there exists a finite neighbourhood $\mathcal{N}\subset\mathbb{Z}^{d}$ a local function $f:S^{\mathcal{N}}\rightarrow S$ such that :

$$
\forall x \in S^{\mathbb{Z}^d}, \ \forall k \in \mathbb{Z}^d, \quad F(x)_k = f((x_{k+i})_{i \in \mathcal{N}}).
$$

$$
F(x) = \cdots
$$

 $S = \{\Box, \blacksquare\}, \mathcal{N} = \{-1, 0, 1\}$

For probabilistic CA, the local rule gives, for each element of $S^{\mathcal{N}}$, the probability of each state.

$$
f:S^{\mathcal{N}}\rightarrow \mathcal{M}(S)
$$

Let S be a finite set, and $d \geq 1$.

A function $F:S^{\mathbb{Z}^d}\to S^{\mathbb{Z}^d}$ is a **cellular automaton** if there exists a finite neighbourhood $\mathcal{N}\subset\mathbb{Z}^{d}$ a local function $f:S^{\mathcal{N}}\rightarrow S$ such that :

$$
\forall x \in S^{\mathbb{Z}^d}, \ \forall k \in \mathbb{Z}^d, \quad F(x)_k = f((x_{k+i})_{i \in \mathcal{N}}).
$$

$$
F(x) = \cdots
$$

 $S = \{\Box, \blacksquare\}, \mathcal{N} = \{-1, 0, 1\}$

For probabilistic CA, the local rule gives, for each element of $S^{\mathcal{N}}$, the probability of each state.

$$
f:S^{\mathcal{N}}\to \mathcal{M}(S)\qquad \digamma:\mathcal{M}(S^{\mathbb{Z}^d})\to \mathcal{M}(S^{\mathbb{Z}^d})
$$

2 [First rule \(isotropic\)](#page-14-0)

- 3 [A little digression: bootstrap percolation](#page-21-0)
- [Second rule \(directional\)](#page-53-0)

First rule (isotropic)

- \bullet If all neighbours are N, the new state is N.
- \bullet If all neighbours are A or D, the new state is A.
- Otherwise, the new state of the cell is:

N with proba.
$$
\frac{\exp(\lambda n_N)}{\exp(\lambda n_N) + \exp(\lambda (n_A + n_D))}
$$

A with proba.
$$
\frac{\exp(\lambda (n_A + n_D))}{\exp(\lambda n_N) + \exp(\lambda (n_A + n_D))}
$$

where n_N , n_A , n_D are resp. the nb. of neighbours N, A, D.

von Neumann neighbourhood

First rule (isotropic)

Evolution of a random configuration with $L = 32$, and $\lambda = 1$.

Density of defects $d_D = 0.1$: the alert state invades the whole grid.

First rule (isotropic)

Evolution of a random configuration with $L = 32$, and $\lambda = 1$.

Density of defects $d_D = 0.1$: the alert state invades the whole grid.

Density of defects $d_D = 0.02$: the diffusion of the alert state remains bounded.

Experimental observations:

 $\overline{+}$ suitable for practical use on finite grids (the parameter λ allows to adjust the threshold of defects),

Experimental observations:

- suitable for practical use on finite grids (the parameter λ allows to adjust the threshold of defects),
- $\left(\begin{matrix} \\ 1 \end{matrix}\right)$ the experimental threshold depends on the size of the grid.

Experimental observations:

- suitable for practical use on finite grids (the parameter λ allows to adjust the threshold of defects),
- the experimental threshold depends on the size of the grid.

 \rightsquigarrow It certainly does not work on the entire \mathbb{Z}^2 lattice.

2 [First rule \(isotropic\)](#page-14-0)

- 3 [A little digression: bootstrap percolation](#page-21-0)
- 4 [Second rule \(directional\)](#page-53-0)

- Cells in state 1 always remain in state 1.
- Cells in state 0 with ≥ 2 neighb. in state 1 become in state 1.

Simulation with $d_1 = 0.05$.

Step 0

- Cells in state 1 always remain in state 1.
- Cells in state 0 with ≥ 2 neighb. in state 1 become in state 1.

- Cells in state 1 always remain in state 1.
- Cells in state 0 with ≥ 2 neighb. in state 1 become in state 1.

- Cells in state 1 always remain in state 1.
- Cells in state 0 with ≥ 2 neighb. in state 1 become in state 1.

- Cells in state 1 always remain in state 1.
- Cells in state 0 with ≥ 2 neighb. in state 1 become in state 1.

- Cells in state 1 always remain in state 1.
- Cells in state 0 with ≥ 2 neighb. in state 1 become in state 1.

- Cells in state 1 always remain in state 1.
- Cells in state 0 with ≥ 2 neighb. in state 1 become in state 1.

Simulation with $d_1 = 0.05$.

Step 6

- Cells in state 1 always remain in state 1.
- Cells in state 0 with ≥ 2 neighb. in state 1 become in state 1.

- Cells in state 1 always remain in state 1.
- Cells in state 0 with ≥ 2 neighb. in state 1 become in state 1.

Simulation with $d_1 = 0.05$.

Step 8

- Cells in state 1 always remain in state 1.
- Cells in state 0 with ≥ 2 neighb. in state 1 become in state 1.

- Cells in state 1 always remain in state 1.
- Cells in state 0 with ≥ 2 neighb. in state 1 become in state 1.

Simulation with $d_1 = 0.05$.

Step 10

- Cells in state 1 always remain in state 1.
- Cells in state 0 with ≥ 2 neighb. in state 1 become in state 1.

- Cells in state 1 always remain in state 1.
- Cells in state 0 with ≥ 2 neighb. in state 1 become in state 1.

- Cells in state 1 always remain in state 1.
- Cells in state 0 with ≥ 2 neighb. in state 1 become in state 1.

- Cells in state 1 always remain in state 1.
- Cells in state 0 with ≥ 2 neighb. in state 1 become in state 1.

- Cells in state 1 always remain in state 1.
- Cells in state 0 with ≥ 2 neighb. in state 1 become in state 1.

For any $d_1>0$, starting from $\mathcal{B}(d_1)^{\otimes \mathbb{Z}^2}$, the bootstrap <code>CA</code> converges to the "all 1" configuration.

For any $d_1>0$, starting from $\mathcal{B}(d_1)^{\otimes \mathbb{Z}^2}$, the bootstrap <code>CA</code> converges to the "all 1" configuration.

Idea: prove that there is somewhere in the initial configuration an "all 1" square from which the whole configuration will be invaded.

For any $d_1>0$, starting from $\mathcal{B}(d_1)^{\otimes \mathbb{Z}^2}$, the bootstrap <code>CA</code> converges to the "all 1" configuration.

Idea: prove that there is somewhere in the initial configuration an "all 1" square from which the whole configuration will be invaded.

For any $d_1>0$, starting from $\mathcal{B}(d_1)^{\otimes \mathbb{Z}^2}$, the bootstrap <code>CA</code> converges to the "all 1" configuration.

Idea: prove that there is somewhere in the initial configuration an "all 1" square from which the whole configuration will be invaded.

For any $d_1>0$, starting from $\mathcal{B}(d_1)^{\otimes \mathbb{Z}^2}$, the bootstrap <code>CA</code> converges to the "all 1" configuration.

Idea: prove that there is somewhere in the initial configuration an "all 1" square from which the whole configuration will be invaded.

For any $d_1>0$, starting from $\mathcal{B}(d_1)^{\otimes \mathbb{Z}^2}$, the bootstrap <code>CA</code> converges to the "all 1" configuration.

Idea: prove that there is somewhere in the initial configuration an "all 1" square from which the whole configuration will be invaded.

For any $d_1>0$, starting from $\mathcal{B}(d_1)^{\otimes \mathbb{Z}^2}$, the bootstrap <code>CA</code> converges to the "all 1" configuration.

Idea: prove that there is somewhere in the initial configuration an "all 1" square from which the whole configuration will be invaded.

For any $d_1>0$, starting from $\mathcal{B}(d_1)^{\otimes \mathbb{Z}^2}$, the bootstrap <code>CA</code> converges to the "all 1" configuration.

Idea: prove that there is somewhere in the initial configuration an "all 1" square from which the whole configuration will be invaded.

For any $d_1>0$, starting from $\mathcal{B}(d_1)^{\otimes \mathbb{Z}^2}$, the bootstrap <code>CA</code> converges to the "all 1" configuration.

Idea: prove that there is somewhere in the initial configuration an "all 1" square from which the whole configuration will be invaded.

For any $d_1>0$, starting from $\mathcal{B}(d_1)^{\otimes \mathbb{Z}^2}$, the bootstrap <code>CA</code> converges to the "all 1" configuration.

Idea: prove that there is somewhere in the initial configuration an "all 1" square from which the whole configuration will be invaded.

For any $d_1>0$, starting from $\mathcal{B}(d_1)^{\otimes \mathbb{Z}^2}$, the bootstrap <code>CA</code> converges to the "all 1" configuration.

Idea: prove that there is somewhere in the initial configuration an "all 1" square from which the whole configuration will be invaded.

Remark: on a large $N \times N$ grid, Holroyd has proven in 2003 that

\n- $$
d_1 > \frac{\pi^2}{18 \log N} \implies
$$
 conv. to total occupancy with high prob.
\n- $d_1 < \frac{\pi^2}{18 \log N} \implies$ no convergence to total occupancy.
\n

NE-bootstrap percolation

- Cells in state 1 always remain in state 1.
- Cells in state 0 with North and East neighb. in state 1 become in state 1.

NE-bootstrap percolation

- Cells in state 1 always remain in state 1.
- Cells in state 0 with North and East neighb. in state 1 become in state 1.

Proposition

There exists $\beta_c \in (0,1)$ such that:

- for $d_1 < \beta_c$, state 1 does not invade the whole grid,
- for $d_1 > \beta_c$, state 1 invades the grid.

 $\beta_c = 1 - p_c \approx 0.29$, where $p_c =$ threshold for directed site percol.

 $d_1 = 0.25$ $d_1 = 0.35$

(150 iterations)

[First rule \(isotropic\)](#page-14-0)

3 [A little digression: bootstrap percolation](#page-21-0)

Previous rule on NE-neighb., with additional simplifications...

- If the two (red) neighb. are N, the new state is N.
- If the two (red) neighb. are A or D, the new state is A.
- Otherwise, state is A with prob. p and N with prob. $1 p$.

Parameter $p = 0.4$ (200 iterations)

 $d_{D} = 0.02$

Parameter $p = 0.4$ (200 iterations)

$$
d_D=0.02
$$

 $d_{D} = 0.08$

Proposition [Fates-Marchand-M. 2023]

Initial config. with a single cell in state A and no D $T =$ extinction time

- For $p < 1/2$, T is a.s. finite and $\mathbb{E}(T) < +\infty$.
- For $p = 1/2$, T is a.s. finite and $\mathbb{E}(T) = +\infty$.

• For
$$
p > 1/2
$$
, $\mathbb{P}(T = +\infty) > 0$.

Proposition [Fates-Marchand-M. 2023]

Initial config. with a single cell in state \overline{A} and no \overline{D} $T =$ extinction time

- For $p < 1/2$, T is a.s. finite and $\mathbb{E}(T) < +\infty$.
- For $p = 1/2$, T is a.s. finite and $\mathbb{E}(T) = +\infty$.
- For $p > 1/2$, $\mathbb{P}(T = +\infty) > 0$.

Proof: at any time, the config. is either empty or an horiz. A segment. The right boundary evolves as a random walk with steps 1/2 with prob. p and $-1/2$ with prob. $1 - p$.

Proposition [Fatès-Marchand-M. 2023]

Initial config. with a single cell in state D and no A

- $T =$ first return time
	- For $p < 1/2$, T is a.s. finite and $\mathbb{E}(T) < +\infty$.

• For
$$
p \geq 1/2
$$
, $\mathbb{P}(T = +\infty) > 0$.

Proof: previous proposition $+$ Foster's theorem.

Theorem [Fatès-Marchand-M. 2023]

For $p \in (0, \beta_c)$, there exists $d_D^c(p)$ such that:

- for $d_D > d_D^c(p)$, state A invades the grid,
- for $d_D < d_D^c(p)$, state A does not invade the whole grid.

Theorem [Fatès-Marchand-M. 2023]

For $p \in (0, \beta_c)$, there exists $d_D^c(p)$ such that:

- for $d_D > d_D^c(p)$, state A invades the grid,
- for $d_D < d_D^c(p)$, state A does not invade the whole grid.

NE-bootstrap

NE-bootstrap

1	0 with prob. $1 - d_1$		
1	1 with prob. d_1		
1	1	0	1
1	1	0	0
0	0	0	

Our directional rule, with $1 = \{D, A\}$, $0 = N$

 $NE\text{-}bootstrap(d_1) \preceq PCA(p, d_1) \preceq NE\text{-}bootstrap(d_1 + (1 - d_1)p)$

 $NE\text{-}bootstrap(d_1) \preceq PCA(p, d_1) \preceq NE\text{-}bootstrap(d_1 + (1 - d_1)p)$

- \bullet $d_1 > \beta_c \implies$ state A invades the grid
- $d_1 + (1 d_1)p < \beta_c \implies$ state A does not invade the whole grid

The rule is stoch. increasing with d_1 , so for a fixed $p \in (0, \beta_c)$, increasing d_1 takes us from the coexistence to the invasion regime.

NE-bootstrap $(d_1) \preceq PCA(p, d_1) \preceq NE$ -bootstrap $(d_1 + (1 - d_1)p)$

- \bullet $d_1 > \beta_c \implies$ state A invades the grid
- $d_1 + (1 d_1)p < \beta_c \implies$ state A does not invade the whole grid

The rule is stoch. increasing with d_1 , so for a fixed $p \in (0, \beta_c)$, increasing d_1 takes us from the coexistence to the invasion regime.

Corollary:
$$
\frac{\beta_c - p}{1 - p} \leq d_D^c(p) \leq \beta_c
$$
, so $\lim_{p \to 0} d_D^c(p) = \beta_c$.

Conjecture: the prop. still holds for $p \in (0, 1/2)$ and $\lim_{p\rightarrow 1/2}d^\mathsf{c}_D(p)=0$, so one can detect any threshold of defects between 0 and β_c .

First rule:

- \bigodot difficult to analyse, no phase transition on \mathbb{Z}^2 ,
- isotropic, can be extended to irregular networks.

• Second rule:

- artificial direction for the flow of information,
- $\overline{\bigoplus}$ tractable model, phase transition on \mathbb{Z}^2 .

• Perspectives:

- extend the analytical study of the two rules,
- defects that appear dynamically,
- other lattices, random graphs.

A decentralised diagnosis method with probabilistic cellular automata. Nazim Fatès, Régine Marchand, I.M. - AUTOMATA 2023