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The decentralised diagnosis problem

Distributed network, made of interconnected components that
interact with their neighbours.

The components can be subject to failures.

neutre défaut alerte
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The decentralised diagnosis problem

When the density of failures is below a given threshold, some
components should still operate in the neutral state.

When the density is beyond this threshold, all the components
should be in the alert state.

neutre défaut alerte
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The decentralised diagnosis problem

Aim: give the entities a set of instructions to achieve this.

The goal is to gather a global information by exchanging only local
information (consensus-building / self-organization).

Difficulties:

it is not possible to centralize information (entities all play the
same role),

conventional counting techniques cannot be used (entities
have a limited memory).
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The decentralised diagnosis problem

Lattice Z2, on which each cell can be in 3 possible states:

N : neutral,

D : defect (it is a fixed state),

A : alert.

Objective

Find the simplest possible local rule such that, starting from an
initial config. with N and D (indep.), state A invades the grid iff
the density of D exceeds a certain threshold (which we would like
to be able to choose).
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Cellular automata

Let S be a finite set, and d ≥ 1.

A function F : SZd → SZd
is a cellular automaton if there exists

a finite neighbourhood N ⊂ Zd a local function f : SN → S such
that :

∀x ∈ SZd
, ∀k ∈ Zd , F (x)k = f ((xk+i )i∈N ).

? ?? ?? ?? ?? ?? ?? x ?
f

· · ·

· · ·

· · ·

· · ·F (x) =

x =

S = {□,■}, N = {−1, 0, 1}

For probabilistic CA, the local rule gives, for each element of SN ,
the probability of each state.

f : SN → M(S)

F : M(SZd
) → M(SZd

)
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First rule (isotropic)

If all neighbours are N, the new state is N.

If all neighbours are A or D, the new state is A.

Otherwise, the new state of the cell is:

N with proba.
exp(λnN)

exp(λnN) + exp(λ(nA + nD))

A with proba.
exp(λ(nA + nD))

exp(λnN) + exp(λ(nA + nD))
,

where nN , nA, nD are resp. the nb. of neighbours N, A, D.

von Neumann neighbourhood
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First rule (isotropic)

Evolution of a random configuration with L = 32, and λ = 1.

Density of defects dD = 0.1: the alert state invades the whole grid.

t = 0 t = 20 t = 40 t = 260

Density of defects dD = 0.02: the diffusion of the alert state
remains bounded.

t = 0 t = 1000 t = 10000 t = 40000
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First rule (isotropic)

Experimental observations:

+○ suitable for practical use on finite grids (the parameter λ
allows to adjust the threshold of defects),

–○ the experimental threshold depends on the size of the grid.

⇝ It certainly does not work on the entire Z2 lattice.
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A little digression: bootstrap percolation

Cells in state 1 always remain in state 1.

Cells in state 0 with ≥ 2 neighb. in state 1 become in state 1.

Simulation with d1 = 0.05.

Step 0
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A little digression: bootstrap percolation

Theorem [van Enter 1987]

For any d1 > 0, starting from B(d1)⊗Z2
, the bootstrap CA

converges to the “all 1” configuration.

Idea: prove that there is somewhere in the initial configuration an
“all 1” square from which the whole configuration will be invaded.

This will happen iff this square is not surrounded by an “all 0”
rectangle.
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A little digression: bootstrap percolation

Remark: on a large N × N grid, Holroyd has proven in 2003 that

d1 >
π2

18 logN =⇒ conv. to total occupancy with high prob,

d1 <
π2

18 logN =⇒ no convergence to total occupancy.
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A little digression: bootstrap percolation

NE-bootstrap percolation

Cells in state 1 always remain in state 1.

Cells in state 0 with North and East neighb.
in state 1 become in state 1.

Proposition

There exists βc ∈ (0, 1) such that:

for d1 < βc , state 1 does not invade the whole grid,

for d1 > βc , state 1 invades the grid.

βc = 1− pc ≈ 0.29, where pc = threshold for directed site percol.
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A little digression: bootstrap percolation

d1 = 0.25 d1 = 0.35

(150 iterations)
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Second rule (directional)

Previous rule on NE-neighb., with additional simplifications...

If the two (red) neighb. are N, the new state is N.

If the two (red) neighb. are A or D, the new state is A.

Otherwise, state is A with prob. p and N with prob. 1− p.
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Second rule (directional)

Parameter p = 0.4 (200 iterations)

dD = 0.02
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Second rule (directional)

Parameter p = 0.4 (200 iterations)

dD = 0.02 dD = 0.08
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Second rule (directional)

Proposition [Fatès-Marchand-M. 2023]

Initial config. with a single cell in state A and no D
T = extinction time

For p < 1/2, T is a.s. finite and E(T ) < +∞.

For p = 1/2, T is a.s. finite and E(T ) = +∞.

For p > 1/2, P(T = +∞) > 0.

Proof: at any time, the config. is either empty or an horiz. A
segment. The right boundary evolves as a random walk with steps
1/2 with prob. p and −1/2 with prob. 1− p.
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Second rule (directional)

Proposition [Fatès-Marchand-M. 2023]

Initial config. with a single cell in state D and no A
T = first return time

For p < 1/2, T is a.s. finite and E(T ) < +∞.

For p ≥ 1/2, P(T = +∞) > 0.

Proof: previous proposition + Foster’s theorem.
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Second rule (directional)

Theorem [Fatès-Marchand-M. 2023]

For p ∈ (0, βc), there exists dc
D(p) such that:

for dD > dc
D(p), state A invades the grid,

for dD < dc
D(p), state A does not invade the whole grid.
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Second rule (directional)

NE-bootstrap

1 1

1

0 1
1 0
0 0

1 with prob. d1
0 with prob. 1− d1

Our directional rule, with 1 = {D,A}, 0 = N

1 1

1

0 0

1 prob. d1
0 prob. 1− d1

0 1
1 0

1 prob. d1 + (1− d1)p
0 prob. (1− d1)(1− p)
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Second rule (directional)

NE-bootstrap(d1) ⪯ PCA(p, d1) ⪯ NE-bootstrap(d1 + (1− d1)p)

d1 > βc =⇒ state A invades the grid

d1 + (1− d1)p < βc =⇒ state A does not invade the whole
grid

The rule is stoch. increasing with d1, so for a fixed p ∈ (0, βc),
increasing d1 takes us from the coexistence to the invasion regime.

Corollary: βc−p
1−p ≤ dc

D(p) ≤ βc , so limp→0 d
c
D(p) = βc .

Conjecture: the prop. still holds for p ∈ (0, 1/2) and
limp→1/2 d

c
D(p) = 0, so one can detect any threshold of defects

between 0 and βc .
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Conclusion and perspectives

First rule:
–○ difficult to analyse, no phase transition on Z2,
+○ isotropic, can be extended to irregular networks.

Second rule:
–○ artificial direction for the flow of information,
+○ tractable model, phase transition on Z2.

Perspectives:
extend the analytical study of the two rules,
defects that appear dynamically,
other lattices, random graphs.

A decentralised diagnosis method with probabilistic cellular automata.

Nazim Fatès, Régine Marchand, I.M. - AUTOMATA 2023
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