Quenched critical percolation on Galton–Watson trees

Eleanor Archer, Paris Dauphine University

Joint work with Quirin Vogel

Conference GrHyDy2024, October 2024

Let T be a supercritical Galton–Watson tree with no leaves, with offspring law ξ . Let $\mu > 1$ be the mean number of offspring, and **o** the root.

(no leaves means almost sure survival - convenient)

Let T be a supercritical Galton–Watson tree with no leaves, with offspring law ξ . Let $\mu > 1$ be the mean number of offspring, and **o** the root.

Important fact: let Z_n be the number of individuals at generation n. Then \exists r.v. W , supported on $(0,\infty)$, such that, a.s., $\frac{Z_n}{\mu^n}\to W.$

Let T be a supercritical Galton–Watson tree with no leaves, with offspring law ξ . Let $\mu > 1$ be the mean number of offspring, and **o** the root.

We consider **Bernoulli percolation** on T: fix $p \in (0,1)$, and each edge is independently open with probability p , or closed with probability $1 - p$.

Let T be a supercritical Galton–Watson tree with no leaves, with offspring law ξ . Let $\mu > 1$ be the mean number of offspring, and **o** the root.

We consider Bernoulli percolation on T : each edge is independently open with probability p , or closed with probability $1 - p$.

Let T be a supercritical Galton–Watson tree with no leaves, with offspring law ξ . Let $\mu > 1$ be the mean number of offspring, and **o** the root.

We consider Bernoulli percolation on T : each edge is independently open with probability p , or closed with probability $1-p$. We want to study the root cluster.

Percolation on T

As usual, we define:

$$
p_c = \inf\{p > 0 : \mathbb{P}\Big(\mathbf{o} \longleftrightarrow \infty\Big) > 0\}.
$$

What is $p_c(T)$?

Let C denote the root cluster (the blue structure).

Observation: C has the law of a Galton-Watson tree.

Offspring law: first sample $N \sim \xi$, then take Binomial(N, p).

Hence: $\mathbb{P}\big(\mathbf{o} \stackrel{p}{\longleftrightarrow} \infty\big) > 0$ iff mean > 1 , i.e. iff $\mathbb{E}[Np] > 1$. Hence $p_c = 1/\mu$.

What is p_c ?

This is an annealed result. Meaning: we interpreted $\mathbb{P}(\mathbf{o} \longleftrightarrow \infty)$ as the connection probability after sampling both T and its percolation configuration.

What is p_c ?

This is an **annealed** result. Meaning: we interpreted $\mathbb{P}(\mathbf{o} \longleftrightarrow \infty)$ as the connection probability after sampling both T and its percolation configuration.

Another point of view: for a given realisation of T , we can set

$$
\rho_c(\mathcal{T}) = \inf \left\{ \rho > 0 : \mathbb{P}_{\mathcal{T}} \Big(\mathbf{o} \overset{\rho}{\longleftrightarrow} \infty \Big) > 0 \right\},
$$

where $\mathbb{P}_T(\cdot)$ denotes the law of percolation on the explicit tree T.

What is p_c ?

This is an annealed result. Meaning: we interpreted $\mathbb{P}(\mathbf{o} \longleftrightarrow \infty)$ as the connection probability after sampling both T and its percolation configuration.

Another point of view: for a given realisation of T , we can set

$$
p_c(\mathcal{T}) = \inf \left\{ p > 0 : \mathbb{P}_{\mathcal{T}} \Big(\mathbf{o} \stackrel{p}{\longleftrightarrow} \infty \Big) > 0 \right\},
$$

where $\mathbb{P}_T(\cdot)$ denotes the law of percolation on the explicit tree T.

Question: is it true that $p_c(T) = 1/\mu$ for almost every realisation of T?

Consider the random tree \tilde{T} which is equal to T_1 , the 1-regular tree, with prob $1/2$, and T_2 , the 2-regular tree, with prob $1/2$.

Consider the random tree \tilde{T} which is equal to T_1 , the 1-regular tree, with prob $1/2$, and T_2 , the 2-regular tree, with prob $1/2$.

Consider the random tree \tilde{T} which is equal to T_1 , the 1-regular tree, with prob $1/2$, and T_2 , the 2-regular tree, with prob $1/2$.

$$
p_c(T_1)=1 \hspace{1.5cm} p_c(T_2)=1/2
$$

Overall $p_c = 1/2$ since for $p < 1/2$, $\mathbb{P}\left(\mathbf{o} \stackrel{p}{\longleftrightarrow} \infty\right) = \frac{1}{2}$ $\frac{1}{2}\mathbb{P}_{\mathcal{T}_2}\left(\mathbf{o} \stackrel{\rho}{\longleftrightarrow} \infty\right) + \frac{1}{2}$ $\frac{1}{2}\mathbb{P}_{\mathcal{T}_1}\left(\mathbf{0} \stackrel{p}{\longleftrightarrow} \infty\right) = 0,$

Consider the random tree \tilde{T} which is equal to T_1 , the 1-regular tree, with prob $1/2$, and T_2 , the 2-regular tree, with prob $1/2$.

$$
p_c(T_1)=1 \hspace{1.5cm} p_c(T_2)=1/2
$$

Overall $p_c = 1/2$ since for $p < 1/2$,

$$
\mathbb{P}\Big(\mathbf{o}\xleftarrow{\rho}\infty\Big)=\frac{1}{2}\mathbb{P}_{\mathcal{T}_2}\left(\mathbf{o}\xleftarrow{\rho}\infty\right)+\frac{1}{2}\mathbb{P}_{\mathcal{T}_1}\left(\mathbf{o}\xleftarrow{\rho}\infty\right)=0,
$$

and for $p > 1/2$,

$$
\mathbb{P}\Big(\mathbf{o}\stackrel{\boldsymbol{\rho}}{\longleftrightarrow}\infty\Big)\geq \frac{1}{2}\mathbb{P}_{\mathcal{T}_2}\left(\mathbf{o}\stackrel{\boldsymbol{\rho}}{\longleftrightarrow}\infty\right)>0.
$$

Consider the random tree \tilde{T} which is equal to T_1 , the 1-regular tree, with prob $1/2$, and T_2 , the 2-regular tree, with prob $1/2$.

 $p_c(T_1) = 1$ $p_c(T_2) = 1/2$

 $p_c = 1/2$, but it is **not** true that $p_c(\tilde{T}) = 1/2$ almost surely.

Consider the random tree \tilde{T} which is equal to T_1 , the 1-regular tree, with prob $1/2$, and T_2 , the 2-regular tree, with prob $1/2$.

 $p_c(T_1) = 1$ $p_c(T_2) = 1/2$

 $p_c = 1/2$, but it is **not** true that $p_c(\tilde{T}) = 1/2$ almost surely.

For our supercritical GW: $p_c = 1/\mu$, almost surely (Lyons 1990).

Quenched vs annealed results: notation

$$
P = \text{law of } T
$$

$$
\mathbb{P}_T = \text{law of percolation on } T, \text{ given } T
$$

$$
\mathbb{P} = P \times \mathbb{P}_T, \text{ annealed law}
$$

 $T_n = n^{th}$ generation of T, C = cluster of **o**, $Y_n = |C \cap T_n|$, $C_{\geq n} = C$ conditioned to have size *n*, $W = \lim \frac{Z_n}{m^n}$

Anncaled	Quenched
$p_c = 1/\mu$	Quenched
$\mathbb{P}\left(\mathbf{o} \xrightarrow{\rho_c} T_n\right) \sim cn^{-1}$	$\mathbb{P}(C \geq n) \sim c'n^{-1/2}$

Quenched

 $T_n = n^{th}$ generation of T, C = cluster of **o**, $Y_n = |C \cap T_n|$, $C_{\geq n} = C$ conditioned to have size *n*, $W = \lim \frac{Z_n}{m^n}$

Quenched

Annealed	
$p_c = 1/\mu$	Quenched
$\mathbb{P}\left(\mathbf{o} \xleftarrow{\rho_c} \mathcal{T}_n\right) \sim cn^{-1}$	
$\mathbb{P}(C \ge n) \sim c'n^{-1/2}$	
Given $Y_n > 0$: $n^{-1}Y_n \xrightarrow{(d)} Y$	
and $\left(n^{-1}Y_{n(1+t)}\right)_{t \ge 0} \xrightarrow{(d)} \left(Y_t\right)_{t \ge 0}$	

 $T_n = n^{th}$ generation of T, C = cluster of **o**, $Y_n = |C \cap T_n|$, $C_{\geq n} = C$ conditioned to have size *n*, $W = \lim \frac{Z_n}{m^n}$

Anncaled	$p_c = 1/\mu$	Quenched
$p(\mathbf{o} \xleftarrow{p_c} \mathcal{T}_n) \sim cn^{-1}$		
$\mathbb{P}(C \geq n) \sim c'n^{-1/2}$		
Given $Y_n > 0$: $n^{-1}Y_n \xrightarrow{d} Y$		
and $(n^{-1}Y_{n(1+t)})_{t \geq 0} \xrightarrow{d} (Y_t)_{t \geq 0}$		
Given $Y_\infty > 0$: $n^{-1}Y_n \xrightarrow{d} \hat{Y}$		
$(C_{\geq n}, n^{-1/2}d_n, \frac{1}{n}\mu_n) \xrightarrow{d} GHT$		

Quenched

The CRT

Pictures by Igor Kortchemski and Laurent Ménard.

Anncaled
\n
$$
p_c = 1/\mu
$$
\n
$$
\mathbb{P}\left(\mathbf{o} \xleftarrow{\rho_c} \mathcal{T}_n\right) \sim cn^{-1}
$$
\n
$$
\mathbb{P}(|C| \ge n) \sim c'n^{-1/2}
$$
\nGiven $Y_n > 0$: $n^{-1}Y_n \xrightarrow{(d)} Y$
\nand $\left(n^{-1}Y_{n(1+t)}\right)_{t \ge 0} \xrightarrow{(d)} \left(Y_t\right)_{t \ge 0}$
\nGiven $Y_\infty > 0$: $n^{-1}Y_n \xrightarrow{(d)} \hat{Y}$
\n $(C_{\ge n}, n^{-1/2}d_n, \frac{1}{n}\mu_n) \xrightarrow{\text{GHP}} \text{CRT}$

Annealed
\n
$$
p_c = 1/\mu
$$

\n
$$
P(\mathbf{o} \stackrel{p_c}{\longleftrightarrow} T_n) \sim cn^{-1}
$$

\n
$$
P(|C| \ge n) \sim c'n^{-1/2}
$$

\nGiven $Y_n > 0$: $n^{-1}Y_n \stackrel{(d)}{\longrightarrow} Y$
\nand $(n^{-1}Y_{n(1+t)})_{t\ge0} \stackrel{(d)}{\longrightarrow} (Y_t)_{t\ge0}$
\nGiven $Y_\infty > 0$: $n^{-1}Y_n \stackrel{(d)}{\longrightarrow} \hat{Y}$
\n $(C_{\ge n}, n^{-1/2}d_n, \frac{1}{n}\mu_n) \stackrel{(d)}{\underset{\text{GHP}}{\longleftarrow}} CRT$
\n*proved by Michaelen (2019) under higher moment assumptions.

Anncaled	Quenched
$p_c = 1/\mu$	$p_c(T) = 1/\mu$ a.s.
$\mathbb{P}\left(\mathbf{o} \stackrel{p_c}{\longleftrightarrow} T_n\right) \sim cn^{-1}$	$\mathbb{P}_T\left(\mathbf{o} \stackrel{p_c}{\longleftrightarrow} T_n\right) \sim W \cdot cn^{-1}$ a.s.
$\mathbb{P}\left(C \geq n\right) \sim c'n^{-1/2}$	$\mathbb{P}_T\left(C \geq n\right) \sim W \cdot c'n^{-1/2}$ a.s.
$\text{Given } Y_n > 0$: $n^{-1}Y_n \stackrel{(d)}{\rightarrow} Y$	
$\text{and } \left(n^{-1}Y_{n(1+t)}\right)_{t\geq 0} \stackrel{(d)}{\rightarrow} \left(Y_t\right)_{t\geq 0}$	
$\text{Given } Y_\infty > 0$: $n^{-1}Y_n \stackrel{(d)}{\rightarrow} \hat{Y}$	
$(C_{\geq n}, n^{-1/2}d_n, \frac{1}{n}\mu_n) \stackrel{(d)}{\underset{\text{GHP}}{\longleftarrow}} \text{CRT}$	

\n*proved by Michaelen (2019) under higher moment assumptions.

Annealed		Quenched
$p_c = 1/\mu$	$p_c(T) = 1/\mu$ a.s.	
$\mathbb{P}\left(\mathbf{o} \xleftarrow{\rho_c} T_n\right) \sim cn^{-1}$	$\mathbb{P}_T\left(\mathbf{o} \xleftarrow{\rho_c} T_n\right) \sim W \cdot cn^{-1}$ a.s.	
$\mathbb{P}\left(C \ge n\right) \sim c'n^{-1/2}$	$\mathbb{P}_T(C \ge n) \sim W \cdot c'n^{-1/2}$ a.s.	
Given $Y_n > 0$: $n^{-1}Y_n \xrightarrow{(d)} Y$	$n^{-1}Y_n^T \xrightarrow{(d)} Y$ a.s.	
Given $Y_\infty > 0$: $n^{-1}Y_n \xrightarrow{(d)} \hat{Y}$	$n^{-1}Y_n^T \xrightarrow{(d)} Y$ a.s.	
Given $Y_\infty > 0$: $n^{-1}Y_n \xrightarrow{(d)} \hat{Y}$		
$(C_{\ge n}, n^{-1/2}d_n, \frac{1}{n}\mu_n) \xrightarrow{(d)} CRT$		
*proved by Michaelen (2019) under higher moment assumptions.		

Annealed		Quenched
$p_c = 1/\mu$	$p_c(T) = 1/\mu$ a.s.	
$\mathbb{P}(\mathbf{o} \xleftarrow{P_c} \mathbf{T}_n) \sim cn^{-1}$	$\mathbb{P}(\mathbf{o} \xleftarrow{P_c} \mathbf{T}_n) \sim W \cdot cn^{-1}$ a.s.	
$\mathbb{P}(C \ge n) \sim c'n^{-1/2}$	$\mathbb{P}(C \ge n) \sim W \cdot c'n^{-1/2}$ a.s.	
Given $Y_n > 0$: $n^{-1}Y_n \xrightarrow{d} Y$		$n^{-1}Y_n^T \xrightarrow{d} Y$ a.s.
and $(n^{-1}Y_{n(1+t)})_{t\ge0} \xrightarrow{d} (Y_t)_{t\ge0}$		$(n^{-1}Y_{n(1+t)}^T)_{t\ge0} \rightarrow (Y_t)_{t\ge0}$ a.s.
Given $Y_\infty > 0$: $n^{-1}Y_n \xrightarrow{d} \hat{Y}$		
$(C_{\ge n}, n^{-1/2}d_n, \frac{1}{n}\mu_n) \xrightarrow{d} GHT$		
proved by Michaelen (2019) under higher moment assumptions.		

Annealed		Quenched
$p_c = 1/\mu$	$p_c(T) = 1/\mu$ a.s.	
$\mathbb{P}(\mathbf{o} \xleftarrow{P_c} T_n) \sim cn^{-1}$	$\mathbb{P}(\mathbf{o} \xleftarrow{P_c} T_n) \sim W \cdot cn^{-1}$ a.s.	
$\mathbb{P}(C \ge n) \sim c'n^{-1/2}$	$\mathbb{P}(C \ge n) \sim W \cdot c'n^{-1/2}$ a.s.	
Given $Y_n > 0$: $n^{-1}Y_n \xrightarrow{d} Y$		$n^{-1}Y_n^T \xrightarrow{d} Y$ a.s.
and $(n^{-1}Y_{n(1+t)})_{t\ge0} \xrightarrow{d} (Y_t)_{t\ge0}$		$(n^{-1}Y_{n(1+t)}^T)_{t\ge0} \rightarrow (Y_t)_{t\ge0}$ a.s.
Given $Y_\infty > 0$: $n^{-1}Y_n \xrightarrow{d} \hat{Y}$		$(n^{-1}Y_{n(1+t)}^T)_{t\ge0} \rightarrow (Y_t)_{t\ge0}$ a.s.
Given $Y_\infty > 0$: $n^{-1}Y_n \xrightarrow{d} \hat{Y}$		$n^{-1/2}Y_n^T \xrightarrow{d} \hat{Y}$ a.s.
(C _{≥n} , $n^{-1/2}d_n, \frac{1}{n}\mu_n$) $\xrightarrow{d}{GHP}$ CRT		
proved by Michaelen (2019) under higher moment assumptions.		

Annealed		Quenched
$p_c = 1/\mu$	$p_c(T) = 1/\mu$ a.s.	
$\mathbb{P}(\vert C \vert \geq n) \sim c'n^{-1/2}$	$\mathbb{P}_T(\mathbf{0} \stackrel{p_c}{\longleftrightarrow} T_n) \sim W \cdot cn^{-1}$ a.s.	
Given $Y_n > 0$: $n^{-1}Y_n \stackrel{(d)}{\to} Y$		$\mathbb{P}_T(C \geq n) \sim W \cdot c'n^{-1/2}$ a.s.
Given $Y_n > 0$: $n^{-1}Y_n \stackrel{(d)}{\to} Y$		$n^{-1}Y_n^T \stackrel{(d)}{\to} Y$ a.s.
Given $Y_\infty > 0$: $n^{-1}Y_n \stackrel{(d)}{\to} \hat{Y}$		$\left(n^{-1}Y_{n(1+t)}^T\right)_{t\geq 0} \stackrel{(d)}{\to} (Y_t)_{t\geq 0}$ a.s.
Given $Y_\infty > 0$: $n^{-1}Y_n \stackrel{(d)}{\to} \hat{Y}$		$n^{-1/2}Y_n^T \stackrel{(d)}{\to} \hat{Y}$ a.s.
(C _{≥n} , $n^{-1/2}d_n$, $\frac{1}{n}\mu_n$) $\frac{(d)}{GHP}$ CRT		$(C_{≥n}^T, n^{-1/2}d_n, \frac{1}{n}\mu_n)$ $\frac{(d)}{GHP}$ CRT a.s.
proved by Michaelen (2019) under higher moment assumptions.		

Quenched vs annealed results - stable analogues

Stable tails on offspring law: $\xi(x,\infty) \sim cx^{-\alpha}$, where $\alpha \in (1,2)$. $T_n = n^{th}$ generation of T, $C =$ cluster of **o**, $Y_n = |C \cap T_n|$, $C_{\geq n} = C$ conditioned to have size *n*, $W = \lim \frac{Z_n}{m^n}$

Annealed		Quenched
$p_c = 1/\mu$	$p_c(T) = 1/\mu$ a.s.	
$\mathbb{P}\left(\mathbf{o} \xleftarrow{P_c} T_n\right) \sim cn^{-\frac{1}{\alpha-1}}$	$\mathbb{P}_T\left(\mathbf{o} \xleftarrow{P_c} T_n\right) \sim W \cdot cn^{-\frac{1}{\alpha-1}}$	
$\mathbb{P}\left(C \geq n\right) \sim c'n^{-1/\alpha}$	$\mathbb{P}_T\left(C \geq n\right) \sim W \cdot c'n^{-1/\alpha}$	
Given $Y_n > 0$: $n^{-\frac{1}{\alpha-1}} Y_n \xrightarrow{d} Y$	$n^{-\frac{1}{\alpha-1}} Y_n \xrightarrow{d} Y$ a.s.	
$\left(n^{-\frac{1}{\alpha-1}} Y_{n(1+t)}\right)_{t\geq 0} \xrightarrow{d} \left(Y_t\right)_{t\geq 0}$	$\left(n^{-\frac{1}{\alpha-1}} Y_n^T \xrightarrow{d} Y_n \xrightarrow{d} (Y_t)_{t\geq 0}$ a.s.	
Given $Y_\infty > 0$: $n^{-\frac{1}{\alpha-1}} Y_n \xrightarrow{d} \hat{Y}$	$n^{-\frac{1}{\alpha-1}} Y_n^T \xrightarrow{d} \hat{Y}$	
$(C_{\geq n}, n^{-(1-1/\alpha)} d_n, \frac{1}{n} \mu_n) \xrightarrow{d} \text{GHP}$	$(C_{\geq n}^T, n^{-(1-1/\alpha)} d_n, \frac{1}{n} \mu_n) \xrightarrow{d} \text{GHP}$	

Stable trees

Pictures by Igor Kortchemski.

The CRT

Pictures by Igor Kortchemski and Laurent Ménard.

Choose $0 \ll m \ll n$ (in fact $m = C \log n$). Intuition:

$$
\mathbb{P}_{\mathcal{T}}\left(\mathbf{o} \stackrel{\rho_c}{\longleftrightarrow} \mathcal{T}_n\right) \approx \sum_{v \in \mathcal{T}_m} \mathbb{P}_{\mathcal{T}}\left(\mathbf{o} \leftrightarrow v \stackrel{*}{\longleftrightarrow} \mathcal{T}_n\right)
$$

Error bounded by (use inclusion-exclusion):

$$
\sum_{\substack{u,v\in \mathcal{T}_m \\ u\neq v}} \mathbb{P}_{\mathcal{T}}\Big(\mathbf{o} \leftrightarrow (u,v) \stackrel{*}{\leftrightarrow} \mathcal{T}_n\Big) .
$$

Choose $0 \ll m \ll n$ (in fact $m = C \log n$). Intuition:

$$
\mathbb{P}_{\mathcal{T}}\left(\mathbf{o} \stackrel{\rho_c}{\longleftrightarrow} \mathcal{T}_n\right) \approx \sum_{v \in \mathcal{T}_m} \mathbb{P}_{\mathcal{T}}\left(\mathbf{o} \leftrightarrow v \stackrel{*}{\longleftrightarrow} \mathcal{T}_n\right)
$$

Error bounded by (use inclusion-exclusion):

$$
\sum_{\substack{u,v\in \mathcal{T}_m \\ u\neq v}} \mathbb{P}_{\mathcal{T}}\Big(\mathbf{o} \leftrightarrow (u,v) \stackrel{*}{\leftrightarrow} \mathcal{T}_n\Big) .
$$

Natural strategy: use second moment and Borel-Cantelli. Show that

$$
\mathbb{P}_{\mathcal{T}}\left(\mathbf{o} \stackrel{p_c}{\longleftrightarrow} \mathcal{T}_n\right) - W \cdot cn^{-\frac{1}{\alpha-1}} = o(n^{-\frac{1}{\alpha-1}})
$$

with probability at least $1-n^{-2}.$

Choose $0 \ll m \ll n$ (in fact $m = C \log n$). Intuition:

$$
\mathbb{P}_{\mathcal{T}}\left(\mathbf{o} \stackrel{P_c}{\longleftrightarrow} \mathcal{T}_n\right) \approx \sum_{v \in \mathcal{T}_m} \mathbb{P}_{\mathcal{T}}\left(\mathbf{o} \leftrightarrow v \stackrel{*}{\longleftrightarrow} \mathcal{T}_n\right)
$$

Error bounded by (use inclusion-exclusion):

$$
\sum_{\substack{u,v\in \mathcal{T}_m \\ u\neq v}} \mathbb{P}_{\mathcal{T}}\Big(\mathbf{o} \leftrightarrow (u,v) \stackrel{*}{\leftrightarrow} \mathcal{T}_n\Big) .
$$

Natural strategy: use second moment and Borel-Cantelli. Show that

$$
\mathbb{P}_{\mathcal{T}}\left(\mathbf{o} \stackrel{p_c}{\longleftrightarrow} \mathcal{T}_n\right) - W \cdot cn^{-\frac{1}{\alpha-1}} = o(n^{-\frac{1}{\alpha-1}})
$$

with probability at least $1-n^{-2}.$

Problem: This is asking for a lot. Can we get away with weaker tail decay?

Want:

$$
\mathbb{P}_{\mathcal{T}}\left(\mathbf{o} \stackrel{\rho_c}{\longleftrightarrow} \mathcal{T}_n\right) - W \cdot cn^{-\frac{1}{\alpha-1}} = o(n^{-\frac{1}{\alpha-1}}). \tag{1}
$$

Set $\rho_n = \mathbb{P}_{\mathcal{T}}\Big(\mathbf{o} \stackrel{\rho_c}{\longleftrightarrow} \mathcal{T}_n\Big)$. Note that ρ_n is decreasing.

Want:

$$
\mathbb{P}_{\mathcal{T}}\left(\mathbf{o} \stackrel{\rho_c}{\longleftrightarrow} \mathcal{T}_n\right) - W \cdot cn^{-\frac{1}{\alpha-1}} = o(n^{-\frac{1}{\alpha-1}}). \tag{1}
$$

Set $\rho_n = \mathbb{P}_{\mathcal{T}}\Big(\mathbf{o} \stackrel{\rho_c}{\longleftrightarrow} \mathcal{T}_n\Big)$. Note that ρ_n is decreasing.

Suppose we could prove (1) only for even n. Then, for odd n,

$$
W \cdot cn^{-\frac{1}{\alpha-1}} \sim p_{n-1} \leq p_n \leq p_{n+1} \sim W \cdot cn^{-\frac{1}{\alpha-1}},
$$

so we get the result for odd *n* for free.

How far can we push this?

In fact: it suffices to prove convergence along any sub-exponentially growing sequence. We set $n_k = k^K$, where K is large, and use Borel-Cantelli to show that

$$
p_{n_k} \sim W \cdot cn_k^{-\frac{1}{\alpha-1}}
$$

almost surely.

In fact: it suffices to prove convergence along any sub-exponentially growing sequence. We set $n_k = k^K$, where K is large, and use Borel-Cantelli to show that

$$
p_{n_k} \sim W \cdot cn_k^{-\frac{1}{\alpha-1}}
$$

almost surely.

Then if $n \in [n_k, n_{k+1}]$: $n^{\frac{1}{\alpha-1}}p_n \leq \left(\frac{n_{k+1}}{n}\right)$ n_k $\int^{\frac{1}{\alpha-1}} n_k^{\frac{1}{\alpha-1}} p_{n_k} \sim cW,$

and similarly for the lower bound, so we get that $\rho_n \sim W \cdot cn^{-\frac{1}{\alpha-1}}.$

In fact: it suffices to prove convergence along any sub-exponentially growing sequence. We set $n_k = k^K$, where K is large, and use Borel-Cantelli to show that

$$
p_{n_k} \sim W \cdot cn_k^{-\frac{1}{\alpha-1}}
$$

almost surely.

Then if $n \in [n_k, n_{k+1}]$: $n^{\frac{1}{\alpha-1}}p_n \leq \left(\frac{n_{k+1}}{n}\right)$ n_k $\int^{\frac{1}{\alpha-1}} n_k^{\frac{1}{\alpha-1}} p_{n_k} \sim cW,$

and similarly for the lower bound, so we get that $\rho_n \sim W \cdot cn^{-\frac{1}{\alpha-1}}.$

Since K can be as large as we like, we just need to obtain tail decay of $n^{-\varepsilon}$ and then set $K=2\varepsilon^{-1}$.

Choose $0 \ll m \ll n$. Intuition:

$$
\mathbb{P}_{\mathcal{T}}(Y_n > 0) \approx \sum_{v \in \mathcal{T}_m} \mathbb{P}_{\mathcal{T}}\left(\mathbf{o} \leftrightarrow v \stackrel{*}{\leftrightarrow} \mathcal{T}_n\right)
$$

Error bounded by (use inclusion-exclusion):

$$
\sum_{\substack{u,v\in \mathcal{T}_m \\ u\neq v}} \mathbb{P}_{\mathcal{T}}\left(\mathbf{o} \leftrightarrow (u,v) \stackrel{*}{\leftrightarrow} \mathcal{T}_n\right).
$$

Choose $0 \ll m \ll n$. Intuition:

$$
\mathbb{P}_{\mathcal{T}}(Y_n > 0) \approx \sum_{v \in \mathcal{T}_m} \mathbb{P}_{\mathcal{T}}\left(\mathbf{o} \leftrightarrow v \stackrel{*}{\leftrightarrow} \mathcal{T}_n\right)
$$

Error bounded by (use inclusion-exclusion):

$$
\sum_{\substack{u,v\in T_m\\u\neq v}}\mathbb{P}_{\mathcal{T}}\bigg(\mathbf{o} \leftrightarrow (u,v) \stackrel{*}{\leftrightarrow} \mathcal{T}_n\bigg)\,.
$$

Strategy: show that

$$
\mathbb{P}_{\mathcal{T}}(\mathbf{o} \longleftrightarrow \mathcal{T}_n) - W \cdot cn^{-\frac{1}{\alpha-1}} = o(n^{-\frac{1}{\alpha-1}})
$$

with probability at least $1 - n^{-\varepsilon}$.

Connection probabilities: $\mathbb{P}_T\big(\mathbf{o} \stackrel{p_c}{\longleftrightarrow} \mathcal{T}_n\big)$ - main term Apply Chebyshev to $\sum_{v\in\mathcal{T}_m}\mathbb{P}_\mathcal{T}\Big(\mathbf{o} \leftrightarrow v \stackrel{*}{\leftrightarrow} \mathcal{T}_n\Big).$

Apply Chebyshev to $\sum_{v\in\mathcal{T}_m}\mathbb{P}_\mathcal{T}\Big(\mathbf{o} \leftrightarrow v \stackrel{*}{\leftrightarrow} \mathcal{T}_n\Big).$ Expectation:

$$
\mathbf{E}\left[\sum_{v\in T_m}\mathbb{P}_{\mathcal{T}}\left(\mathbf{o} \leftrightarrow v \stackrel{*}{\leftrightarrow} \mathcal{T}_n\right)\middle| \mathcal{F}_m\right] = \frac{|\mathcal{T}_m|}{\mu^m}\mathbb{P}(\mathbf{o} \leftrightarrow \mathcal{T}_{n-m}) \sim Wcn^{-\frac{1}{\alpha-1}}.
$$

Apply Chebyshev to $\sum_{v\in\mathcal{T}_m}\mathbb{P}_\mathcal{T}\Big(\mathbf{o} \leftrightarrow v \stackrel{*}{\leftrightarrow} \mathcal{T}_n\Big).$ Expectation:

$$
\mathbf{E}\left[\sum_{v\in\mathcal{T}_m}\mathbb{P}_{\mathcal{T}}\left(\mathbf{o}\leftrightarrow v\stackrel{*}{\leftrightarrow}\mathcal{T}_n\right)\middle|\mathcal{F}_m\right]=\frac{|\mathcal{T}_m|}{\mu^m}\mathbb{P}(\mathbf{o}\leftrightarrow\mathcal{T}_{n-m})\sim\text{Wcn}^{-\frac{1}{\alpha-1}}.
$$

Variance:

$$
\operatorname{Var}\left(\sum_{v \in T_m} \mathbb{P}_{\mathcal{T}}\left(0 \leftrightarrow v \stackrel{*}{\leftrightarrow} \mathcal{T}_n\right) \middle| \mathcal{F}_m\right) = \mu^{-2m} \sum_{v \in T_m} \operatorname{Var}\left(\mathbb{P}_{\mathcal{T}}\left(v \stackrel{*}{\leftrightarrow} \mathcal{T}_n\right)\right)
$$

$$
\leq \mu^{-2m} \sum_{v \in T_m} \mathbf{E}\left[\mathbb{P}_{\mathcal{T}}\left(v \stackrel{*}{\leftrightarrow} \mathcal{T}_n\right)\right]
$$

$$
\leq c |\mathcal{T}_m| n^{-\frac{1}{\alpha - 1}} \mu^{-2m}.
$$

Expectation $\sim \mathit{Wcn}^{-\frac{1}{\alpha-1}}$ Variance $\leq C|\mathcal{T}_m|n^{-\frac{1}{\alpha-1}}\mu^{-2m}$.

Need sum to be within $o(n^{-\frac{1}{\alpha-1}})$ of its mean, say within $n^{-\frac{1}{\alpha-1}}/ \log n$. By Chebyshev, this occurs with probability at least

$$
1 - c \frac{|T_m|}{\mu^m} n^{\frac{1}{\alpha - 1}} \mu^{-m} (\log n)^2.
$$

Expectation $\sim \mathit{Wcn}^{-\frac{1}{\alpha-1}}$ Variance $\leq C|\mathcal{T}_m|n^{-\frac{1}{\alpha-1}}\mu^{-2m}$.

Need sum to be within $o(n^{-\frac{1}{\alpha-1}})$ of its mean, say within $n^{-\frac{1}{\alpha-1}}/ \log n$. By Chebyshev, this occurs with probability at least

$$
1 - c \frac{|T_m|}{\mu^m} n^{\frac{1}{\alpha - 1}} \mu^{-m} (\log n)^2.
$$

So need

$$
cWn^{\frac{1}{\alpha-1}}\mu^{-m}(\log n)^2\leq n^{-\varepsilon}.
$$

Connection probabilities: $\mathbb{P}_T\big(\mathbf{o} \stackrel{p_c}{\longleftrightarrow} \mathcal{T}_n\big)$ - error term Set $\bm{p}_{u,v} = \mathbb{P}_\mathcal{T}\Big(u \overset{*}{\leftrightarrow} \mathcal{T}_n, v \overset{*}{\leftrightarrow} \mathcal{T}_n\Big).$ Bound ρ^{th} moment, $\frac{1}{2} < p < \frac{\alpha}{2}$ $\frac{\alpha}{2}$:

$$
\left(\sum_{\substack{u,v\in \mathcal{T}_m \\ u\neq v}} \mathbb{P}_{\mathcal{T}}\left(\mathbf{o} \leftrightarrow (u,v) \stackrel{*}{\leftrightarrow} \mathcal{T}_n\right)\right)^p \leq \left(\sum_{i=1}^m \sum_{\substack{w\in \mathcal{T}_i \\ u\neq v}} \sum_{\substack{u,v\in \mathcal{T}_m^{(w)} \\ u\neq v}} \frac{\mathbf{p}_{u,v}}{\mu^{2m-i}}\right)^p
$$

Connection probabilities: $\mathbb{P}_T\big(\mathbf{o} \stackrel{p_c}{\longleftrightarrow} \mathcal{T}_n\big)$ - error term Set $\bm{p}_{u,v} = \mathbb{P}_\mathcal{T}\Big(u \overset{*}{\leftrightarrow} \mathcal{T}_n, v \overset{*}{\leftrightarrow} \mathcal{T}_n\Big).$ Bound ρ^{th} moment, $\frac{1}{2} < p < \frac{\alpha}{2}$ $\frac{\alpha}{2}$:

$$
\left(\sum_{\substack{u,v\in \mathcal{T}_m \\ u\neq v}} \mathbb{P}_{\mathcal{T}}\left(\mathbf{o} \leftrightarrow (u,v) \stackrel{*}{\leftrightarrow} \mathcal{T}_n\right)\right)^p \leq \left(\sum_{i=1}^m \sum_{\substack{w\in \mathcal{T}_i \\ u\neq v}} \sum_{\substack{u,v\in \mathcal{T}_m^{(w)} \\ u\neq v}} \frac{\mathbf{p}_{u,v}}{\mu^{2m-i}}\right)^p
$$

Take expectation, apply Jensen's inequality many times and sum...

$$
\mathsf{E}\left[\left(\sum_{\substack{u,v\in\mathcal{T}_m\\u\neq v}}\mathbb{P}_{\mathcal{T}}\left(\mathbf{o}\leftrightarrow(u,v)\stackrel{*}{\leftrightarrow}\mathcal{T}_n\right)\right)^p\right]\leq C\mu^{m(1-p)}\mathsf{E}\left[W^{2p}\right]\mathsf{E}[\mathbf{p}_{u,v}]^p
$$

Connection probabilities: $\mathbb{P}_T\big(\mathbf{o} \stackrel{p_c}{\longleftrightarrow} \mathcal{T}_n\big)$ - error term Set $\bm{p}_{u,v} = \mathbb{P}_\mathcal{T}\Big(u \overset{*}{\leftrightarrow} \mathcal{T}_n, v \overset{*}{\leftrightarrow} \mathcal{T}_n\Big).$ Bound ρ^{th} moment, $\frac{1}{2} < p < \frac{\alpha}{2}$ $\frac{\alpha}{2}$:

$$
\left(\sum_{\substack{u,v\in \mathcal{T}_m \\ u\neq v}} \mathbb{P}_{\mathcal{T}}\left(\mathbf{o} \leftrightarrow (u,v) \stackrel{*}{\leftrightarrow} \mathcal{T}_n\right)\right)^p \leq \left(\sum_{i=1}^m \sum_{\substack{w\in \mathcal{T}_i \\ u\neq v}} \sum_{\substack{u,v\in \mathcal{T}_m^{(w)} \\ u\neq v}} \frac{\mathbf{p}_{u,v}}{\mu^{2m-i}}\right)^p
$$

Take expectation, apply Jensen's inequality many times and sum...

$$
\mathsf{E}\left[\left(\sum_{\substack{u,v\in\mathcal{T}_m\\u\neq v}}\mathbb{P}_{\mathcal{T}}\left(\mathbf{o}\leftrightarrow(u,v)\stackrel{*}{\leftrightarrow}\mathcal{T}_n\right)\right)^p\right]\leq C\mu^{m(1-p)}\mathsf{E}\left[W^{2p}\right]\mathsf{E}[\boldsymbol{p}_{u,v}]^p
$$

 $\leq C' \mu^{m(1-p)} n^{-\frac{2p}{\alpha-1}}.$

Take expectation, apply Jensen's inequality many times and sum...

$$
\mathbf{E}\left[\left(\sum_{\substack{u,v\in T_m\\u\neq v}}\mathbb{P}_{\mathcal{T}}\left(\mathbf{o}\leftrightarrow(u,v)\stackrel{*}{\leftrightarrow}\mathcal{T}_n\right)\right)^p\right]\leq C'\mu^{m(1-p)}n^{-\frac{2p}{\alpha-1}}.
$$

Take expectation, apply Jensen's inequality many times and sum...

$$
\mathbf{E}\left[\left(\sum_{\substack{u,v\in\mathcal{T}_m\\u\neq v}}\mathbb{P}_{\mathcal{T}}\left(\mathbf{o}\leftrightarrow(u,v)\stackrel{*}{\leftrightarrow}\mathcal{T}_n\right)\right)^p\right]\leq C'\mu^{m(1-p)}n^{-\frac{2p}{\alpha-1}}.
$$

Then L^p Markov inequality:

$$
\mathbb{P}\Big(\text{error} > n^{-\frac{1}{\alpha-1}}/\log n\Big) \leq C'\mu^{m(1-p)}n^{-\frac{p}{\alpha-1}}(\log n)^p.
$$

Take expectation, apply Jensen's inequality many times and sum...

$$
\mathbf{E}\left[\left(\sum_{\substack{u,v\in\mathcal{T}_m\\u\neq v}}\mathbb{P}_{\mathcal{T}}\left(\mathbf{o}\leftrightarrow(u,v)\stackrel{*}{\leftrightarrow}\mathcal{T}_n\right)\right)^p\right]\leq C'\mu^{m(1-p)}n^{-\frac{2p}{\alpha-1}}.
$$

Then L^p Markov inequality:

$$
\mathbb{P}\Big(\text{error} > n^{-\frac{1}{\alpha-1}}/\log n\Big) \leq C'\mu^{m(1-p)}n^{-\frac{p}{\alpha-1}}(\log n)^p.
$$

So need $C'\mu^{m(1-p)}n^{-\frac{p}{\alpha-1}}(\log n)^p\leq n^{-\varepsilon}.$

Need:

$$
cWn^{\frac{1}{\alpha-1}}\mu^{m}(\log n)^{2} \leq n^{-\varepsilon}
$$

and
$$
C'\mu^{m(1-\rho)}n^{-\frac{\rho}{\alpha-1}}(\log n)^{\rho} \leq n^{-\varepsilon}
$$

Need:

$$
n^{\frac{1}{\alpha-1}}\mu^{-m} \ll n^{-\varepsilon}
$$

and
$$
\mu^{m(1-p)}n^{-\frac{p}{\alpha-1}} \ll n^{-\varepsilon}
$$

Need:

$$
n^{\frac{1}{\alpha-1}}\mu^{-m} \ll n^{-\varepsilon}
$$
\nand

\n
$$
\mu^{m(1-p)}n^{-\frac{p}{\alpha-1}} \ll n^{-\varepsilon}
$$

Note that $1-p < p$ so choose m so that $\mu^m = n^{\frac{1+\varepsilon}{\alpha-1}}$ and $\mu^{m(1-p)/p} \leq n^{\frac{1-\varepsilon}{\alpha-1}}.$

And it's done!

Annealed		Quenched
$p_c = 1/\mu$	$p_c(T) = 1/\mu$ a.s.	
$\mathbb{P}(\vert C \vert \geq n) \sim c'n^{-1/2}$	$\mathbb{P}_T(\mathbf{0} \stackrel{p_c}{\longleftrightarrow} T_n) \sim W \cdot cn^{-1}$ a.s.	
Given $Y_n > 0$: $n^{-1}Y_n \stackrel{(d)}{\to} Y$		$\mathbb{P}_T(C \geq n) \sim W \cdot c'n^{-1/2}$ a.s.
Given $Y_n > 0$: $n^{-1}Y_n \stackrel{(d)}{\to} Y$		$n^{-1}Y_n^T \stackrel{(d)}{\to} Y$ a.s.
Given $Y_\infty > 0$: $n^{-1}Y_n \stackrel{(d)}{\to} \hat{Y}$		$\left(n^{-1}Y_{n(1+t)}^T\right)_{t\geq 0} \stackrel{(d)}{\to} (Y_t)_{t\geq 0}$ a.s.
Given $Y_\infty > 0$: $n^{-1}Y_n \stackrel{(d)}{\to} \hat{Y}$		$n^{-1/2}Y_n^T \stackrel{(d)}{\to} \hat{Y}$ a.s.
(C _{≥n} , $n^{-1/2}d_n$, $\frac{1}{n}\mu_n$) $\frac{(d)}{GHP}$ CRT		$(C_{≥n}^T, n^{-1/2}d_n, \frac{1}{n}\mu_n)$ $\frac{(d)}{GHP}$ CRT a.s.
proved by Michaelen (2019) under higher moment assumptions.		

Extension to critical percolation on hyperbolic random planar maps??

 $C =$ cluster of **o**, $C_{\geq n} = C$ conditioned to have size *n*,

Image by Gourab Ray.

Extension to critical percolation on hyperbolic random planar maps??

C = cluster of **o**, $C_{\geq n} = C$ conditioned to have size *n* Annealed Quenched p_c is explicit (Ray 2014) $\mathbb{P}(\mathsf{Height}(\mathsf{C}) \geq n) \sim cn^{-1}$ * $\mathbb{P}(|\mathsf{C}| \geq n) \sim c' n^{-1/2}$ * (d) [→] ^Y ⁿ (d) [→] ^Y^ˆ ⁿ $(C_{\geq n}, n^{-1/2}d_n, \frac{1}{n})$ $\frac{1}{n}\mu_n$) $\frac{(d)}{\text{GHP}}$ CRT * *A.-Croydon 2023.

