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The model

Let T be a supercritical Galton—Watson tree with no leaves, with
offspring law £. Let > 1 be the mean number of offspring, and o
the root.
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The model

Let T be a supercritical Galton—Watson tree with no leaves, with
offspring law £. Let > 1 be the mean number of offspring, and o
the root.

We consider Bernoulli percolation on T: each edge is
independently open with probability p, or closed with probability
1 — p. We want to study the root cluster.



Percolation on T

As usual, we define:

pc = inf{p > 0:IP’(0<L>OO) > 0}.



What is p.(T)?
Let C denote the root cluster (the blue structure).

Observation: C has the law of a Galton-Watson tree.
Offspring law: first sample N ~ &, then take Binomial(N, p).

Hence: ]P’(o LA oo) > 0 iff mean > 1, i.e. iff E[Np] > 1.
Hence p. = 1/p.
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This is an annealed result. Meaning: we interpreted P(0 «— o0)
as the connection probability after sampling both T and its
percolation configuration.
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This is an annealed result. Meaning: we interpreted P(0 «— o0)
as the connection probability after sampling both T and its
percolation configuration.

Another point of view: for a given realisation of T, we can set

pc(T):inf{p>0:PT<o<L>oo> >0},

where P (+) denotes the law of percolation on the explicit tree T.

Question: is it true that p.(T) = 1/u for almost every realisation
of T?
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Example of a random tree where there is a difference

Consider the random tree T which is equal to T, the 1-regular
tree, with prob 1/2, and Ty, the 2-regular tree, with prob 1/2.

O

pc(Tl) =1 pc(T2) = 1/2

pe = 1/2, but it is not true that p.(T) = 1/2 almost surely.

For our supercritical GW: p. = 1/, almost surely (Lyons 1990).



Quenched vs annealed results: notation

T, = n*h generation of T, C = cluster of 0, Y, = |C N T,|,
C>, = C conditioned to have size n, W = lim %

P=lawof T
P+ = law of percolation on T, given T
P =P x Py, annealed law
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Pictures by lgor Kortchemski and Laurent Ménard.
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Quenched vs annealed results - stable analogues
Stable tails on offspring law: £(x, 00) ~ cx™%, where a € (1,2).
T, = n*h generation of T, C = cluster of 0, Y, = |C N T,|,
C>, = C conditioned to have size n, W = lim %
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Connection probabilities: IPT(O Py Tn>

Choose 0 < m < n (in fact m = Clogn). Intuition:

Pr(o<®s Tp)~ Y Pr(oe v T,)
VETm

Error bounded by (use inclusion-exclusion):

Z }P’T<o < (u,v) <& T,,) .

u,vETH

u#v
Natural strategy: use second moment and Borel-Cantelli. Show
that

]PT<0 Py T,,) - W. cnfﬁ = o(nfﬁ)
with probability at least 1 — n~2.

Problem: This is asking for a lot. Can we get away with weaker
tail decay?
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Connection probabilities: IPT(O Py Tn>

Want:

1 1

JP’T(O LN T,,) —W.en a1 =o(n o). (1)
Set p, = IP’T(O LN T,,). Note that p, is decreasing.

Suppose we could prove (1) only for even n. Then, for odd n,

__1 __1
W-cn o1 ~pp1 <pp<ppr1~W-cn o1,

so we get the result for odd n for free.

How far can we push this?
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Connection probabilities: IPT(O Py Tn>

In fact: it suffices to prove convergence along any
sub-exponentially growing sequence. We set ny = kX, where K is
large, and use Borel-Cantelli to show that

1

pn, ~ W -cn, °71
almost surely.

Then if n € [nk, nk+1]:

1

1 M1\ * 1 o
ne=1p, < ( n* > ng =t pp, ~ cW,
k

1
and similarly for the lower bound, so we get that p, ~ W -cn™ o-T.

Since K can be as large as we like, we just need to obtain tail
decay of n=¢ and then set K = 2¢71.
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Connection probabilities: IPT(O Py Tn>

Choose 0 <« m < n. Intuition:

Pr(Ya>0)~ > IPT<0<—> v T,,)
vETm

Error bounded by (use inclusion-exclusion):

g IP’7-<0 & (u,v) <& T,,) :
u,vETH
u#v

Strategy: show that

Pr(o+—T,) — W - s o(n—ﬁ)

€

with probability at least 1 — n™=.
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Connection probabilities: IPT(O Py Tn> - main term

Apply Chebyshev to > ]P’T(o Svs T,,).
Expectation:

" T, _
E E IP’T(o Vo T,,) Fml|l = %P(o <> Tph_m) ~ Wen alfl.
7!
vETH

Variance:

Var| S PT(O PN T,,) F | =02y Var(IP’T<v & T))
vETH, vETH
<p?m Y E[PT(V & T)]
VeTm

Sl om
< c|Tmln a-tp=m.
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1
Need sum to be within o(n™ 2-1) of its mean, say within
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Connection probabilities: IPT(O Py Tn> - main term

1
Expectation ~ Wen™ a1
1
Variance < C|Tpp|n a—1p=2m,

1
Need sum to be within o(n™ 2-1) of its mean, say within

n_ﬁ/ log n. By Chebyshev, this occurs with probability at least
| Tm| 1 _
1-— cumm‘nalu ™ (log n)>?.

So need )
cWna=1"™(log n)?> < n~¢.



Connection probabilities: Pr( o Py Tn> - error term

Set p,,v = ]PT(u < Tp,v <> T,). Bound pt" moment,

1<p<3
p
> Br(oe (uv) ¢4 T) [y v =
u,veETn i= 1W€T’quT

u#v u#v



Connection probabilities: Pr( o Py Tn> - error term

Set p,,v = IPT(U < Tp,v <> T,). Bound pt" moment,

1<p<3
p P
Y Erfocnan) | 2| X% 2 =
u,vETn i=1 weT; u, vET
u#v u;év

Take expectation, apply Jensen's inequality many times and sum...
p
E[| 3 IP’T<0 & (u,v) & T,,) < CumC-P)E[W?] E[p,,]°

u,vETh
u#v



Connection probabilities: Pr( o Py Tn> - error term

Set p,,v = IPT(U < Tp,v <> T,). Bound pt" moment,

1<p<3
p P
Y Erfocnan) | 2| X% 2 =
u,vETn i=1 weT; u, vET
u#v u;év

Take expectation, apply Jensen's inequality many times and sum...
p
E[| 3 IP’T<0 & (u,v) & T,,) < CumC-P)E[W?] E[p,,]°

u,vETh
u#v

2p
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Take expectation, apply Jensen's inequality many times and sum...

p
E Z IP’T(o o (u,v) & T,,) < C’um(lf”)n_%.
u,veTh

u#v

Then LP Markov inequality:

__1 1 __P_
P(error >n a-1/log n) < C'p™=P)p~ a1 (log n)P.

So need C’um(l_")n_ﬁ(log n)P < ne.
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Need:

CWnﬁ,um(log n)?<n®

and C'p™P) =551 (log n)P < n~°
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Need:

1
ne-tpy~ M n¢
and ,u'"(l_p)nfﬁ <«n*

lte
Note that 1 — p < p so choose m so that ¢™ = ne-1 and

um(=p)/P < o=t

And it's done!
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Extension to critical percolation on hyperbolic random
planar maps??

C = cluster of 0, C>, = C conditioned to have size n
Annealed Quenched
pc is explicit (Ray 2014)
P(Height(C) > n) ~ cn™! *
P(|C| > n) ~ c'n~1/2 *

d
(Con 20, Lpin) 4 CRT *
*A.-Croydon 2023.



Thank you!!
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