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The model
Let T be a supercritical Galton–Watson tree with no leaves, with
offspring law ξ. Let µ > 1 be the mean number of offspring, and o
the root.

...

(no leaves means almost sure survival - convenient)

We consider Bernoulli percolation on T : fix p ∈ (0, 1), and each
edge is independently open with probability p, or closed with
probability 1− p.
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Important fact: let Zn be the number of individuals at generation
n. Then ∃ r.v. W , supported on (0,∞), such that, a.s., Zn

µn →W .
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The model
Let T be a supercritical Galton–Watson tree with no leaves, with
offspring law ξ. Let µ > 1 be the mean number of offspring, and o
the root.

...

We consider Bernoulli percolation on T : each edge is
independently open with probability p, or closed with probability
1− p. We want to study the root cluster.



Percolation on T

...

As usual, we define:

pc = inf{p > 0 : P
(
o

p←→∞
)
> 0}.



What is pc(T )?
Let C denote the root cluster (the blue structure).
Observation: C has the law of a Galton-Watson tree.
Offspring law: first sample N ∼ ξ, then take Binomial(N, p).

...

Hence: P
(
o

p←→∞
)
> 0 iff mean > 1, i.e. iff E[Np] > 1.

Hence pc = 1/µ.



What is pc?

This is an annealed result. Meaning: we interpreted P(o←→∞)
as the connection probability after sampling both T and its
percolation configuration.

Another point of view: for a given realisation of T , we can set

pc(T ) = inf
{
p > 0 : PT

(
o

p←→∞
)
> 0
}
,

where PT (·) denotes the law of percolation on the explicit tree T .

Question: is it true that pc(T ) = 1/µ for almost every realisation
of T?
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Example of a random tree where there is a difference
Consider the random tree T̃ which is equal to T1, the 1-regular
tree, with prob 1/2, and T2, the 2-regular tree, with prob 1/2.

pc(T1) = 1 pc(T2) = 1/2

Overall pc = 1/2 since for p < 1/2,

P
(
o

p←→∞
)

=
1

2
PT2

(
o

p←→∞
)

+
1

2
PT1

(
o

p←→∞
)

= 0,

and for p > 1/2,

P
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o
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)
≥ 1

2
PT2

(
o
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Example of a random tree where there is a difference

Consider the random tree T̃ which is equal to T1, the 1-regular
tree, with prob 1/2, and T2, the 2-regular tree, with prob 1/2.

pc(T1) = 1 pc(T2) = 1/2

pc = 1/2, but it is not true that pc(T̃ ) = 1/2 almost surely.

For our supercritical GW: pc = 1/µ, almost surely (Lyons 1990).
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Quenched vs annealed results: notation

Tn = nth generation of T , C = cluster of o, Yn = |C ∩ Tn|,
C≥n = C conditioned to have size n, W = lim Zn

mn

P = law of T
PT = law of percolation on T , given T
P = P× PT , annealed law



Quenched vs annealed results - finite variance

Tn = nth generation of T , C = cluster of o, Yn = |C ∩ Tn|,
C≥n = C conditioned to have size n, W = lim Zn

mn

Annealed Quenched
pc = 1/µ pc = 1/µ a.s.

P
(
o

pc←→ Tn

)
∼ cn−1 P

(
o

pc←→ Tn

)
∼W · cn−1

P(|C | ≥ n) ∼ c ′n−1/2 P(|C | ≥ n) ∼W · c ′n−1/2

Given Yn > 0: n−1Yn
(d)→ Y n−1/2Yn

(d)→ Y

and
(
n−1Yn(1+t)

)
t≥0

(d)→ (Yt)t≥0
(
n−1/2Yn(1+t)

)
t≥0

(d)→ (Yt)t≥0

Given Y∞ > 0: n−1Yn
(d)→ Ŷ n−1/2Yn

(d)→ Ŷ

(C≥n, n
−1/2dn,

1
nµn)

(d)→
GHP

CRT (C≥n, n
−1/2dn,

1
nµn)

(d)→
GHP

CRT
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(C≥n, n
−1/2dn,

1
nµn)

(d)→
GHP

CRT (C≥n, n
−1/2dn,

1
nµn)

(d)→
GHP

CRT



Quenched vs annealed results - finite variance

Tn = nth generation of T , C = cluster of o, Yn = |C ∩ Tn|,
C≥n = C conditioned to have size n, W = lim Zn

mn

Annealed Quenched
pc = 1/µ pc = 1/µ a.s.

P
(
o

pc←→ Tn

)
∼ cn−1 P

(
o

pc←→ Tn

)
∼W · cn−1

P(|C | ≥ n) ∼ c ′n−1/2 P(|C | ≥ n) ∼W · c ′n−1/2

Given Yn > 0: n−1Yn
(d)→ Y n−1/2Yn

(d)→ Y

and
(
n−1Yn(1+t)

)
t≥0

(d)→ (Yt)t≥0
(
n−1/2Yn(1+t)

)
t≥0

(d)→ (Yt)t≥0

Given Y∞ > 0: n−1Yn
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The CRT

Pictures by Igor Kortchemski and Laurent Ménard.
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Quenched vs annealed results - stable analogues
Stable tails on offspring law: ξ(x ,∞) ∼ cx−α, where α ∈ (1, 2).
Tn = nth generation of T , C = cluster of o, Yn = |C ∩ Tn|,
C≥n = C conditioned to have size n, W = lim Zn

mn

Annealed Quenched
pc = 1/µ pc(T ) = 1/µ a.s.

P
(
o

pc←→ Tn

)
∼ cn−

1
α−1 PT

(
o

pc←→ Tn

)
∼W · cn−

1
α−1

P(|C | ≥ n) ∼ c ′n−1/α PT (|C | ≥ n) ∼W · c ′n−1/α

Given Yn > 0: n−
1

α−1Yn
(d)→ Y n−

1
α−1Y T

n
(d)→ Y a.s.(

n−
1

α−1Yn(1+t)

)
t≥0

(d)→ (Yt)t≥0
(
n−

1
α−1Y T

n(1+t)

)
t≥0

(d)→ (Yt)t≥0 a.s.

Given Y∞ > 0: n−
1

α−1Yn
(d)→ Ŷ n−

1
α−1Y T

n
(d)→ Ŷ

(C≥n, n
−(1−1/α)dn,

1
nµn)

(d)→
GHP
Tα (CT

≥n, n
−(1−1/α)dn,

1
nµn)

(d)→
GHP
Tα a.s.



Stable trees

Pictures by Igor Kortchemski.
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Pictures by Igor Kortchemski and Laurent Ménard.



Connection probabilities: PT

(
o

pc←→ Tn

)
Choose 0� m� n (in fact m = C log n). Intuition:

PT

(
o

pc←→ Tn

)
≈
∑
v∈Tm

PT

(
o↔ v

∗←→ Tn

)
Error bounded by (use inclusion-exclusion):∑

u,v∈Tm
u 6=v

PT

(
o↔ (u, v)

∗←→ Tn

)
.

Natural strategy: use second moment and Borel-Cantelli. Show
that

PT

(
o

pc←→ Tn

)
−W · cn−

1
α−1 = o(n−

1
α−1 )

with probability at least 1− n−2.

Problem: This is asking for a lot. Can we get away with weaker
tail decay?
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. Note that pn is decreasing.

Suppose we could prove (1) only for even n. Then, for odd n,
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α−1 ∼ pn−1 ≤ pn ≤ pn+1 ∼W · cn−
1

α−1 ,

so we get the result for odd n for free.

How far can we push this?
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Connection probabilities: PT

(
o

pc←→ Tn

)
In fact: it suffices to prove convergence along any
sub-exponentially growing sequence. We set nk = kK , where K is
large, and use Borel-Cantelli to show that

pnk ∼W · cn
− 1
α−1

k

almost surely.

Then if n ∈ [nk , nk+1]:

n
1

α−1 pn ≤
(
nk+1

nk

) 1
α−1

n
1

α−1

k pnk ∼ cW ,

and similarly for the lower bound, so we get that pn ∼W · cn−
1

α−1 .

Since K can be as large as we like, we just need to obtain tail
decay of n−ε and then set K = 2ε−1.
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Connection probabilities: PT

(
o

pc←→ Tn

)
Choose 0� m� n. Intuition:

PT (Yn > 0) ≈
∑
v∈Tm

PT

(
o↔ v

∗←→ Tn

)
Error bounded by (use inclusion-exclusion):∑

u,v∈Tm
u 6=v

PT

(
o↔ (u, v)

∗←→ Tn

)
.

Strategy: show that

PT (o←→Tn)−W · cn−
1

α−1 = o(n−
1

α−1 )

with probability at least 1− n−ε.
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- main term
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PT
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∗←→ Tn

)
.

Expectation:
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∑
v∈Tm

PT
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∗←→ Tn

) ∣∣∣∣∣∣ Fm

 =
|Tm|
µm

P(o↔ Tn−m) ∼Wcn−
1

α−1 .

Variance:

Var

∑
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Var
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≤ µ−2m

∑
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E
[
PT

(
v
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)]
≤ c|Tm|n−

1
α−1µ−2m .
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Connection probabilities: PT

(
o

pc←→ Tn

)
- main term

Expectation ∼Wcn−
1

α−1

Variance ≤ C |Tm|n−
1

α−1µ−2m .

Need sum to be within o(n−
1

α−1 ) of its mean, say within

n−
1

α−1 / log n. By Chebyshev, this occurs with probability at least

1− c
|Tm|
µm

n
1

α−1µ−m(log n)2.

So need
cWn

1
α−1µ−m(log n)2 ≤ n−ε.
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Connection probabilities: PT

(
o

pc←→ Tn

)
- error term

Set pu,v = PT

(
u
∗←→ Tn, v

∗←→ Tn

)
. Bound pth moment,

1
2 < p < α

2 :

 ∑
u,v∈Tm
u 6=v

PT

(
o↔ (u, v)

∗←→ Tn

)
p

≤


m∑
i=1

∑
w∈Ti

∑
u,v∈T (w)

m
u 6=v

pu,v

µ2m−i


p

Take expectation, apply Jensen’s inequality many times and sum...

E


 ∑

u,v∈Tm
u 6=v

PT

(
o↔ (u, v)

∗←→ Tn

)
p ≤ Cµm(1−p)E

[
W 2p

]
E[pu,v ]p

≤ C ′µm(1−p)n−
2p
α−1 .
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(

error > n−
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So need C ′µm(1−p)n−
p

α−1 (log n)p ≤ n−ε.
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Connection probabilities: PT

(
o

pc←→ Tn

)

Need:

cWn
1

α−1µm(log n)2 ≤ n−ε

and C ′µm(1−p)n−
p

α−1 (log n)p ≤ n−ε

Since p > 1/2, 1− p < p so choose m so that µm = n
1+ε
α−1 and

µm(1−p)/p ≤ n
1−ε
α−1 .
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And it’s done!
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Quenched vs annealed results - finite variance
Tn = nth generation of T , C = cluster of o, Yn = |C ∩ Tn|,
C≥n = C conditioned to have size n, W = lim Zn

mn

Annealed Quenched
pc = 1/µ pc(T ) = 1/µ a.s.

P
(
o

pc←→ Tn

)
∼ cn−1 PT

(
o

pc←→ Tn

)
∼W · cn−1 a.s. *

P(|C | ≥ n) ∼ c ′n−1/2 PT (|C | ≥ n) ∼W · c ′n−1/2 a.s.

Given Yn > 0: n−1Yn
(d)→ Y n−1Y T

n
(d)→ Y a.s. *

and
(
n−1Yn(1+t)

)
t≥0

(d)→ (Yt)t≥0
(
n−1Y T

n(1+t)

)
t≥0

(d)→ (Yt)t≥0 a.s.

Given Y∞ > 0: n−1Yn
(d)→ Ŷ n−1/2Y T

n
(d)→ Ŷ a.s. *

(C≥n, n
−1/2dn,

1
nµn)

(d)→
GHP

CRT (CT
≥n, n

−1/2dn,
1
nµn)

(d)→
GHP

CRT a.s.

*proved by Michelen (2019) under higher moment assumptions.



Extension to critical percolation on hyperbolic random
planar maps??

C = cluster of o, C≥n = C conditioned to have size n,

Image by Gourab Ray.



Extension to critical percolation on hyperbolic random
planar maps??

C = cluster of o, C≥n = C conditioned to have size n

Annealed Quenched
pc is explicit (Ray 2014) pc(T ) = 1/µ a.s.

P(Height(C ) ≥ n) ∼ cn−1 * PT

(
o

pc←→ Tn

)
∼W · cn−1 a.s. *

P(|C | ≥ n) ∼ c ′n−1/2 * PT (|C | ≥ n) ∼W · c ′n−1/2 a.s.

Given Yn > 0: n−1Yn
(d)→ Y n−1Y T

n
(d)→ Y a.s. *

and
(
n−1Yn(1+t)

)
t≥0

(d)→ (Yt)t≥0
(
n−1Y T

n(1+t)

)
t≥0

(d)→ (Yt)t≥0 a.s.

Given Y∞ > 0: n−1Yn
(d)→ Ŷ n−1/2Y T

n
(d)→ Ŷ a.s. *

(C≥n, n
−1/2dn,

1
nµn)

(d)→
GHP

CRT * (CT
≥n, n

−1/2dn,
1
nµn)

(d)→
GHP

CRT a.s.

*A.-Croydon 2023.



Thank you!!


