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The model

An interacting particle system on {0, 1}Zd = {0, .}Zd ,d > 2.
Dynamics: birth and death of particles
e Fix a parameter g € [0, 1]

e atrate 1 each site tries to refresh its state. If the refresh
occurs the new state is O with prob. ¢ (@ with prob. 1 — ¢)

e the refresh occurs iff the site has at least 2 empty nearest
neighbours = iff the kinetic constraint is satisfied
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FA-2f: properties

® Reversible w.r.t. Bernoulli(1-q) product measure,
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e Non attractive dynamics
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e There exist blocked configurations and blocked clusters

* * TEeeY Q

O oee 1005068l
Py g

8888 3300ty

C.TONINELLI



FA-2f: properties

® Reversible w.r.t. Bernoulli(1-q) product measure,

e Non attractive dynamics
— injecting more vacancies could help filling more sites
— coupling and censoring arguments fail

e There exist blocked configurations and blocked clusters

— several invariant measures, ergodicity issues
— relaxation is not uniform on the initial condition
— coercive inequalities useless for convergence to equilibrium

C.TONINELLI



FA-2f: properties

® Reversible w.r.t. Bernoulli(1-q) product measure,

e Non attractive dynamics
— injecting more vacancies could help filling more sites
— coupling and censoring arguments fail

e There exist blocked configurations and blocked clusters

— several invariant measures, ergodicity issues
— relaxation is not uniform on the initial condition
— coercive inequalities useless for convergence to equilibrium

¢ [solated empty regions cannot expand

coee — sharp slowdown for ¢ | 0
cH%— cee N
16606000 S heterogeneous relaxation
[ ) = ]

soee — subtle relaxation mechanism

C.TONINELLI



FA-2f: properties

® Reversible w.r.t. Bernoulli(1-q) product measure,

e Non attractive dynamics
— injecting more vacancies could help filling more sites
— coupling and censoring arguments fail

e There exist blocked configurations and blocked clusters

— several invariant measures, ergodicity issues
— relaxation is not uniform on the initial condition
— coercive inequalities useless for convergence to equilibrium

¢ [solated empty regions cannot expand

coee — sharp slowdown for ¢ | 0
cH%— cee N
16606000 S heterogeneous relaxation
[ ) = ]

soee — subtle relaxation mechanism

Math. motivation #1: several IPS tools fail — new tools needed!
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Motivations from physics

e FA2f was introduced in the ’80’s to model/understand the
liquid/glass transition, a major open problem in physics

e Varying the constraint one gets a whole class of IPS, the
Kinetically Constrained Models (KCM)
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Motivations from physics

e FA2f was introduced in the ’80’s to model/understand the
liquid/glass transition, a major open problem in physics

e Varying the constraint one gets a whole class of IPS, the
Kinetically Constrained Models (KCM)

e Key question: how do KCM "time-scales” diverge for ¢ | 0 ?

e Numerical simulations: sharp/anomalous divergence
— no clear-cut answers / contradicting conjectures

e Math. motivation #2: put physicists works on firmer
ground / settle controversies
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Does 1 ~ 1, contain a blocked cluster?

A deterministic discrete time monotone dynamics on {0, 1}%°
e kill (in parallel) particles that have at least 2 empty n.n.;

e iterate until reaching a stable configuration, n>
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Does 1 ~ 1, contain a blocked cluster?

A deterministic discrete time monotone dynamics on {0, 1}%°
e kill (in parallel) particles that have at least 2 empty n.n.;
e iterate until reaching a stable configuration, n*>°
e cluster of particles in 7> <« blocked cluster for FA2f

— this is 2-neighbour Bootstrap Percolation (BP)
— Fix ¢ > 0 and n ~ p4, then n* is a.s. empty [Van Enter '88]
How does the first time the origin is empty scale as ¢ | 0?
7 = exp ()\d ¢V + 0(1))) [Aizenman - Lebowitz ’88]

® )\y = 72/18 [Holroyd *08]
® )\;=... Vd > 2 [Balogh Bollobas Duminil-Copin Morris ’12]
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Back to FA2f: our results

Theorem [Hartarsky, Martinelli, C.T. "20]

As ¢ | 0, w.h.p. for the stationary FA-2f model on Z¢ it holds

dx A
T = exXp <qle_f)(1+O(1))>, d22

the same result holds for E,, (7). Thus, wh.p. 7 = (%)@l
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Back to FA2f: our results

Theorem [Hartarsky, Martinelli, C.T. "20]

As ¢ | 0, w.h.p. for the stationary FA-2f model on Z¢ it holds

d X )\d
T = eXpP <q1/(d_1)(1 -+ 0(1))) 5 d Z 2

the same result holds for E,, (7). Thus, wh.p. 7 = (%)@l

® not a corollary of BP result: very different mechanism!

® we settle contrasting conjectures in physics literature
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Step 1 make a good guess for the optimal relaxation mechanism
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How do we get these sharp results?

Step 1 make a good guess for the optimal relaxation mechanism

Step 2 develop a toolbox (Poincaré inequalities + renormalisation)
to translate heuristics into rigorous bounds = 7 < ...

Step 3 identify a bottleneck, i.e. an unlikely configuration set that
has to be visited before emptying the origin — 7 > ...
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Heuristics (q | 0): optimal relaxzation mechanism

e Relaxation is driven by the motion of rare large patches of
empty sites, the droplets

e droplet density pp := exp ( %7(;\41 (1+ 0(1)))
droplet length Lp:=1/¢% a > 2

¢ Droplets can move in any direction
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Heuristics (q | 0): optimal relaxzation mechanism

e Relaxation is driven by the motion of rare large patches of
empty sites, the droplets

e droplet density pp := exp ( 1/d 4(1+ o(l)))
droplet length Lp:=1/¢% a > 2
¢ Droplets can move in any direction ...isn’t this
contradictory with “finite empty regions cannot expand™?!
e

eose

cooe

e
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Heuristics (q | 0): optimal relaxzation mechanism

e Relaxation is driven by the motion of rare large patches of
empty sites, the droplets
e droplet density pp := exp ( ‘ffd’\dl (1+ 0(1)))
droplet length Lp:=1/¢% a > 2
e Droplets can move in any direction
10O OO S
(= 5 OO 5 > L= % 5 { \JI'\—Q
EEHHH)—(HEE 55»—(%54% JE
f f JI‘ f ...a single adjacent o allows expansion! f JI‘ f f JI‘
¢ Droplet motion requires few additional empty sites —

this good environment is very likely since Lp >> |logq|/q
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Heuristics: optimal relaxation mechanism

@ identify optimal droplets: (typically) mobile & not too rare
® empty columns of size poly(q) are too rare!
® multi-scale construction: our droplets have an empty core of
size ¢~ /2 + properly arranged empty sites around the core
@ study droplet motion: droplets deform themselves to
@ move nearby (time scale O(1))
® create a new droplet (time scale ~ pBl)
@ coalesce (time scale O(1))

— Coalescing Branching Simple Exclusion Process — 7 ~ pp'

7P ~ size of minimal region to be unblocked before the origin
= distance from the origin to the nearest droplet

—1/d
_>TBPNPD/ ~ 71/d
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Flavour of the proof

e Hitting times <> Dirichlet eigenvalues

1 1 Var(f)
E (7)< =TX == sup ——>%
,u( ) q FA-2f q 7 DFA»zf(f)

® the supremum is over non constant functions;

® Drai(f) is the "energy” =3-, 1u(n) 3-, co(n)(f(n*) — f(1))*
® 5* = configuration flipped at x; c¢,(n) = rate for n — n*
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Flavour of the proof

e Hitting times < Dirichlet eigenvalues

1 1 Var(f)
E, (7)< -TX, =~ sup —— %
,u( ) q FA-2f q f DFA»zf(f)

® Renormalisation on droplet scale — CBSEP dynamics for
the droplets and FA2f dynamics inside the droplets

TFere-lzf < TcheéEP X TF;\e-lzf(LD | droplet)
® Prove Poincaré inequalities for FA2f in a droplet and CBSEP

[log q|3

rel —1 rel g rel
TCBSEP S pD ? TFA-Zf(LD |dr0plet) S € Ve << TCBSEP
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Why bothering with the exact constants?

e sharp constant is extremely hard to grasp numerically:
® subtle corrections to the dominant behavior, ex. d = 2:
TP = exp (%(1 - c\/a)) (Hartarsky, Morris)
— slow convergence
® even harder for FA-jf with j > 2 where

BP

7 s exp®i—1 g~ 1/(d=i+1)

C.TONINELLI



Why bothering with the exact constants?

e sharp constant is extremely hard to grasp numerically:

® subtle corrections to the dominant behavior, ex. d = 2:
TP = exp (%(1 - c\/a)) (Hartarsky, Morris)
— slow convergence

® even harder for FA-jf with j > 2 where

BP

7 s exp®i—1 g~ 1/(d=i+1)

¢ a deeper understanding of the cooperative relaxation

C.TONINELLI



Why bothering with the exact constants?

e sharp constant is extremely hard to grasp numerically:

® subtle corrections to the dominant behavior, ex. d = 2:
TP = exp (%(1 - c\/a)) (Hartarsky, Morris)
— slow convergence

® even harder for FA-jf with j > 2 where

BP

7 s exp®i—1 g~ 1/(d=i+1)

¢ a deeper understanding of the cooperative relaxation

¢ the mathematical tools we build are very flexible
— we adapt them to get universality results for KCM in d = 2
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Open problems

e Conjecture #1: Start from p,, with ¢’ # ¢ and ¢, ¢’ > 0 and
call u! the evoluted measure at time ¢, u* = i, P;. It holds

lim p! = fq-

t—o00
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start from a completely filled configuration. The set of sites
that have been already updated at time ¢ rescaled by ¢
converges as t — oo to a non random limit shape.
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Open problems

e Conjecture #1: Start from p,, with ¢’ # ¢ and ¢, ¢’ > 0 and
call u! the evoluted measure at time ¢, u* = i, P;. It holds

lim p! = fq-

t—o00

e Conjecture #2: Consider FA-2f on Zj with empty b.c. and
start from a completely filled configuration. The set of sites
that have been already updated at time ¢ rescaled by ¢
converges as t — oo to a non random limit shape.

More generally: we lack robust tools to tackle the out of
equilibrium regime of KCM !
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Thanks for your attention!
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A multi-scale definition
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e Super-good (SG) rectangles:

® a rectangle of class 0 is SG if it is empty;

® arectangle of class n is SG if it contains a SG rectangle R’ of
class n — 1 (the core) AND it satisfies traversability conditions
elsewhere, i.e. no double column/raw fully occupied.

C.TONINELLI



Droplets

A multi-scale definition
° / = e”\/a/\/a, N =8|logq|/\/a — {n = Lp = poly(q)
® arectangle R is of class n if
® Ris a single site for n = 0;
® R=/{, xhwithhe€ ({,,_1,¢,] for n = 2m;
® R=wx{y, withw € ({y,,lp41] forn=2m+1

e Super-good (SG) rectangles:

® a rectangle of class 0 is SG if it is empty;

® arectangle of class n is SG if it contains a SG rectangle R’ of
class n — 1 (the core) AND it satisfies traversability conditions
elsewhere, i.e. no double column/raw fully occupied.

Droplets are defined as ¢ x £ SG rectangles
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How do droplets look like?

Ex. of a SG rectangle of class 6. Here arrows indicate
traversability and the black square is completely empty.

: ‘

01 |02 s
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How do droplets look like?

Ex. of a SG rectangle of class 6. Here arrows indicate
traversability and the black square is completely empty.

; ‘

01 (o |3

Droplets = /) x ¢y squares that are SG with
N = 8|logq|//g, so that £ = g~ 17/2+o(1)

NB any other big enough power would work the same, no
special meaning of 17/2. ..
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FA-7f model

e for jn-BP for all d > j > 2, w.h.p. it holds

, N
BP j—1 d,j
To ~ €Xp <q1/(dj+1)>

expl = exponential iterated k times (Balogh, Bollobas,
Duminil-Copin, Morris ’12)

Same scaling for 7y (Hartarsky, Martinelli, C.T. in progress)

o =1 710" = 1/¢Y4, 70 =1/¢"D,
v(1) =3, v(d) =2d > 2 (log corrections in d = 2)
(Cancrini, Roberto, Martinelli, C.T. 08 + Shapira ’20)

® d<j: 19=15 =00 whp. forg—0
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What happens if we change constraint?

Universality results for d = 2

© Supercritical unrooted: 7(q) = ¢~©™
@ Supercritical rooted:
T(q) o q_e(l)ll()g‘ﬂ

@ Finitely critical: 7(¢q) = exp (%@M)

© Infinitely critical:
7(q) = exp (¢ (log q)°)

@ Subcritical:
Jg. > 0, s.t. for ¢ < ¢, it holds 7(q) = o0

[I.Hartarsky, L.Maréché, F.Martinelli, R. Morris, C.T.]
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What happens if we change constraint?

Universality results for d = 2

@ Supercritical unrooted: 7(q) = ¢~ M ~ 7%

@ Supercritical rooted:
(q) = g ®Wllogal 5, 730 — ;—6(1)
@ Finitely critical: 7(q) = exp <w> ~ TBP

© Infinitely critical:
7(q) = exp (¢7*"(log q)°) > 7 = exp (¢~ (log q)°)

@ Subcritical:
Jg. > 0, s.t. for ¢ < ¢, it holds 7(q) = co =7

[I.Hartarsky, L.Maréché, F.Martinelli, R. Morris, C.T.]
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What happens if we change constraint?

Universality results for d = 2
© Supercritical unrooted: 7(¢q) = ¢~©M ~ 7% (FA-16)
@ Supercritical rooted:
7(q) = ¢ OWlogdl 5 78 — (=O()  (Easp)
@ Finitely critical: 7( ( 1)(l°gq Om) ~ 7%  (FA-2f)

© Infinitely critical:

7(q) = exp ( ~2”(log q)° ) > 7% = exp (¢7"(log q)¢)
(Duarte)

@ Subcritical:
dg. > 0, s.t. for ¢ < g. it holds 7(q) = co =7 (North-East)

[I.Hartarsky, L.Maréché, F.Martinelli, R. Morris, C.T.]
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e for ¢ | 0 relaxation is always driven by rare droplets but
depending on the constraints droplet motion can be very
different from CBSEP
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¢ time scales can diverge much faster than for the
corresponding BP model Example: the Duarte model.
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What happens if we change constraint?

e for ¢ | 0 relaxation is always driven by rare droplets but
depending on the constraints droplet motion can be very
different from CBSEP

¢ time scales can diverge much faster than for the
corresponding BP model Example: the Duarte model.

d = 2, constraint = at least 2 empty in N,W,S neighb.
7 — 04 (oga)*) s 10 _ O(q " (loga)?)
logarithmic energy barrier: droplet are at distance ¢ ~ 7%

from the origin and must create ~ log ¢ droplets to reach it
[Maréché, Martinelli, C.T. "20]
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The g-CBSEP chain

e G = (V,E) : finite connected graph

(S, m) : finite probability space

S :S() US1 andp: 7'('(81)

given o € SV, x € V is occupied iff o, € S

g-CBSEP is defined on €, := {o with at least one particle }
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The g-CBSEP chain

e G = (V,E) : finite connected graph

(S, m) : finite probability space

S :S() US1 andp: 7'('(81)

given o € SV, x € V is occupied iff o, € S

g-CBSEP is defined on €, := {o with at least one particle }

¢ Dynamics: at rate one each edge e = (z, y) with at least one
particle is refreshed w.r.t.
7z ® my(- |3 at least one particle in e )

— Reversible w.r.t. @, (- |Q4)
— the projected variables {w, = 1,,¢s, }zcv evolve as
SSEP + branching + coalescing

Theorem [Hartarsky, Martinelli, C.T. "20]

Aspl 0, T < O(p~"log(1/p))




