

Weierstrass Institute for Applied Analysis and Stochastics

Cluster sizes in subcritical soft Boolean models

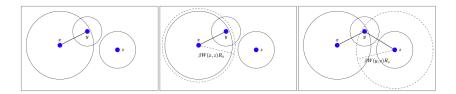
Benedikt Jahnel (WIAS Berlin & TU Braunschweig) joint work with Lukas Lüchtrath (Berlin) and Marcel Ortgiese (Bath)

Vertex locations: X homogeneous Poisson point process on \mathbb{R}^d with intensity 1

- Vertex marks: R_x iid for $x \in X$ with $\mathbb{P}(R_x > r) = 1 \land r^{-d/\gamma}$ and $0 < \gamma < 1$
- Edge weights: $W_{x,y}$ iid for $x, y \in X$ with $\mathbb{P}(W_{x,y} > r) = 1 \wedge r^{-d\delta}$ and $\delta > 1$

Edge drawing: $x, y \in X$ connected by edge iif

$$|x - y| \le \beta W(x, y) (R_x \lor R_y), \qquad \beta > 0$$



Lille · October 2024 · Page 2

- Boolean model subgraph: $W_{x,y}\equiv 1$ and $R_x\vee R_y\leq R_x+R_y\leq 2(R_x\vee R_y)$
- Random connection model subgraph: $R_x\equiv 1$
- **Connected component** of origin (o, R_o)

$$\mathscr{C}_{\beta} := \left\{ x \in X \colon o \leftrightarrow x \text{ in } \mathscr{G}_{\beta} \right\}$$

Critical percolation threshold:

$$\beta_c := \beta_c(\gamma, \delta) := \sup \left\{ \beta > 0 \colon \mathbb{P}_o(\sharp \mathscr{C}_\beta = \infty) = 0 \right\},\$$

Nontriviality: $\beta_c > 0$ if $\gamma < \delta/(\delta + 1)$; $\beta_c = 0$ if $\gamma > \delta/(\delta + 1)$ Gracar, Lüchtrath, Mörters: Percolation phase transition in WDRCMs, AdvAP 2021

Cluster diameter and cardinality:

$$\mathscr{D}_eta:=\supig\{|x|\colon x\in\mathscr{C}_etaig\}$$
 and $\mathscr{N}_eta:=\sharp\mathscr{C}_eta$

Theorem (Subcritical diameter)

Let $d \geq 1$, $\delta > 1$, and $0 < \gamma < \delta/(\delta + 1)$. Then, there exists $\beta_0 := \beta_0(\gamma, \delta) > 0$ such that, for all $0 < \beta < \beta_0$, there exist constants $0 < c, C < \infty$, depending on β, γ , and δ , such that for all m > 1,

(i) if $\gamma < 1/(\delta + 1)$, we have

$$cm^{d(1-\delta)} \leq \mathbb{P}_o(\mathscr{D}_\beta > m) \leq Cm^{d(1-\delta)}$$

(ii) if $\gamma = 1/(\delta + 1)$, we have $cm^{d(1-\delta)} \leq \mathbb{P}_o(\mathscr{D}_\beta > m) \leq C \log(m)m^{d(1-\delta)}$, and (iii) if $1/(\delta + 1) < \gamma < \delta/(\delta + 1)$, we have $cm^d \left(1 - \frac{\delta - 1 + \gamma}{\gamma \delta}\right) < \mathbb{P}_o(\mathscr{D}_\beta > m) < C \log(m)^{1 \vee d(\delta - 1)} m^d \left(1 - \frac{\delta - 1 + \gamma}{\gamma \delta}\right)$.

Comments

- $\gamma \downarrow 0$ recovers *long-range percolation* exponent $d(1 \delta)$
- $\delta \uparrow \infty$ recovers classical Boolean model exponent $d(1 1/\gamma)$ Gouéré: Subcritical regimes in the Poisson Boolean model of continuum percolation. AP (2008)
- Case (i) shows long-range dominates
- Case (iii) shows mixed behavior
- We believe that $\beta_0 = \beta_c$ and have some *bounds on* β_0 based on system parameters
- Phase transition of 2nd order in γ
- Case (i) and (iii) hold under addition of slowly varying functions to the Paretos, but then also slowly varying correction terms in the bounds
- **Logarithmic correction** in upper bound of Case (ii) and (iii) should be absent
- **Lower bounds true** for all β

Qualitative difference due to long-range effect: Single long edge can increase diameter but not cardinality; cardinality driven by high-degree nodes

Theorem (Subcritical cardinality)

Let $d \ge 1$, $\delta > 1$, and $0 < \gamma < 1$.

(i) If $\gamma < 1/2$, then there exists $\beta_0 := \beta_0(\gamma, \delta) > 0$ such that, for all $0 < \beta < \beta_0$, there exist constants $0 < c, C < \infty$ such that, for all m > 1,

$$cm^{1-1/\gamma} \leq \mathbb{P}_o(\mathcal{N}_\beta > m) \leq Cm^{1-1/\gamma}.$$

(ii) If $\gamma > 1/2$, then $\mathbb{E}_o \mathscr{N}_\beta = \infty$ for all $\beta > 0$.

Qualitative difference due to long-range effect: Single long edge can increase diameter but not cardinality; cardinality driven by high-degree nodes

Theorem (Subcritical cardinality)

Let $d \ge 1$, $\delta > 1$, and $0 < \gamma < 1$.

(i) If $\gamma < 1/2$, then there exists $\beta_0 := \beta_0(\gamma, \delta) > 0$ such that, for all $0 < \beta < \beta_0$, there exist constants $0 < c, C < \infty$ such that, for all m > 1,

$$cm^{1-1/\gamma} \leq \mathbb{P}_o(\mathcal{N}_\beta > m) \leq Cm^{1-1/\gamma}.$$

(ii) If
$$\gamma>1/2$$
, then $\mathbb{E}_o\mathscr{N}_eta=\infty$ for all $eta>0$.

- Same exponent as in classical Boolean model (volume = cardinality)
- Different order as in long-range percolation: exponentially-tailed degrees
- Possible that $\mathbb{E}_o \mathcal{N}_\beta < \infty$ and $\mathbb{E}_o \mathcal{D}_\beta^d = \infty$ but $\mathbb{E}_o \mathcal{D}_\beta^d < \infty$ implies $\mathbb{E}_o \mathcal{N}_\beta < \infty$
- **Lower bound true** for all β
- Precise decay in *finite-variance regime* but *should hold* for all $\gamma < \delta/(\delta + 1)$
- Result true for *scale-free percolation* ($R_x \lor R_y o R_x R_y$; subcritical phase $\gamma \leq 1/2$)

Lille · October 2024 · Page 6

Lower bound in Theorem I:

- Part (i): Diameter driven by longest edge incident to origin in longe-range percolation (Boolean part plays no role)
- Part (*iii*): Diameter driven by *longest long-range edge of powerful Boolean neighbor* of origin (mixture of Boolean and long-range contribution)

Upper bound in Theorem I:

- Part (i): No better strategy available as used in lower bound
- Part (*iii*): Build *skeleton path* of important vertices and *first-moment method*
- Theorem II:
 - Coupling with scale-free percolation and multitype branching process (with finite second moment)

Case (i) and (ii): Number of long-range neighbors $\geq m$ is Poisson distributed,

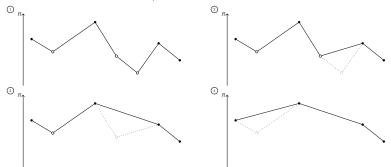
$$\mathbb{P}_o(\mathscr{D}_\beta > m) \ge \mathbb{P}_o(\exists x \sim_{\text{long-range}} o \colon |x| > m) \ge 1 - \exp(-cm^{d(1-\delta)})$$

Case (*iii*): Search for Boolean nearest neighbor with weight $R_x \ge m^{(\delta-1)/\delta}$, which has a long-range neighbor $\ge m$ with typical mark, i.e.,

$$\mathbb{P}_{o}(\mathscr{D}_{\beta} > m) \ge \mathbb{P}_{o}(\exists x \sim o, y \sim x \colon |x| < m, R_{x} \ge m^{(\delta-1)/\delta}, |y| > m)$$
$$\ge 1 - \exp(-cm^{d(1 - (\delta - 1 + \gamma)/(\gamma \delta))})$$

Upper bound in Theorem I

- If $\gamma > 1/2$, expected number of length-2 paths = ∞ since 2nd moment is absent
- Introduce skeleton paths of powerful vertices (paths of running maxima from two sides) Gracar, Lüchtrath, Mörters: Percolation phase transition in WDRCMs, AdvAP 2021



Probability of connection of two consecutive skeleton vertices via connector path bounded by constant times direct connection probability

- First-moment bound only on skeletons
- If $\gamma < 1/(\delta + 1)$: γ manifests in constant only
- If $\gamma > 1/(\delta + 1)$: Skeleton approach allow to focus on skeleton paths
- A Existence of *powerful vertex in origin's component* has right order

$$\mathbb{P}_{o}(\exists x \in \mathscr{C}_{\beta} \colon R_{x} \ge m^{(\delta-1)/\delta}) \le cm^{d(1-(\delta-1+\gamma)/(\gamma\delta))}$$

B Existence of two-step path with weak vertices has right order

$$\mathbb{P}_{o}(\exists x \in \mathscr{C}_{\beta}, y \sim x \colon |x| \le m, |y| \ge 2m, R_{x}, R_{y} < m^{(\delta-1)/\delta})$$
$$\le cm^{d(1-(\delta-1+\gamma)/(\gamma\delta))}$$

C Existence of two-step path with distant weak vertices has (almost) right order

$$\mathbb{P}_{o}(\exists x \in \mathscr{C}_{\beta}, y \sim x : |x|, |y| \le 2m, |x - y| > m/\log(m), R_{x}, R_{y} < m^{(\delta - 1)/\delta}) \\ \le c \log(m)^{d(\delta - 1)} m^{d(1 - (\delta - 1 + \gamma)/(\gamma \delta))}$$

Upper bound in Theorem I

$$\mathbb{P}_{o}(\mathscr{D}_{\beta} > m) \leq \mathbb{P}_{o}(A) + \mathbb{P}_{o}(\{\mathscr{D}_{\beta} > m\} \cap A^{c})$$

$$With D = \{\exists x \in \mathscr{C}_{\beta} \colon m < |x| < 2m, R_{x} < m^{(\delta-1)/\delta}\},$$

$$\mathbb{P}_{o}(\{\mathscr{D}_{\beta} > m\} \cap A^{c}) \leq \mathbb{P}_{o}(D) + \mathbb{P}_{o}(B)$$

$$\leq \mathbb{P}_{o}(D \cap C^{c}) + \mathbb{P}_{o}(C) + \mathbb{P}_{o}(B)$$

 $\blacksquare \ D \cap C^c$ implies existences of (weak vertex) path of length $\log m$ and hence

$$\mathbb{P}_o(D \cap C^c) \le c \log(m) m^{d(1 - (\delta - 1 + \gamma)/(\gamma \delta))}$$

- Lower bound in Theorem II:
 - Strategy: Find vertex $|x| \leq m^{1/d}$, $R_x \approx m^{1/d}$ then $x \sim o$ and x has m neighbors
- Upper bound in Theorem II:
 - Proof for scale-free percolation $(R_x R_y)$: more edges than soft Boolean model
 - Coupling with *multitype branching process* only increases \mathcal{N}_{β}
 - $\blacksquare \mathbb{E}\mathcal{N}_{\beta} < \infty \text{ for } \gamma < 1/2$
 - Due to product structure of kernel: reduce to single-type branching process with mixed Poisson offspring distribution with parameter \sim Pareto $(1/\gamma)$
 - **\mathbf{I}** \mathcal{N}_{β} dominated by *total progeny* of branching process with offsprings ~ Pareto(1/ γ)
 - Dwass' Theorem: $\mathbb{P}_o(\mathcal{N}_\beta > m) \leq m^{1-1/\gamma}$

Thank you.