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Directed animals on the square lattice

» [directed] animal: finite connected set of an [oriented] graph G.

But here we will only consider G = N2, ..

Directed animal (pyramid)

Finite set A C N? such that:
0 € A (the source).
Any other site of A has a neighbor directly on its left or directly below it.

This is a directed animal



Directed animals on the square lattice

» [directed] animal: finite connected set of an [oriented] graph G.

But here we will only consider G = N2, ..

Directed animal (pyramid)

Finite set A C N? such that:
0 € A (the source).
Any other site of A has a neighbor directly on its left or directly below it.

has no neighbour left or below

This is not a directed animal



Directed animals on the square lattice

Why directed animals ?

m Appears in the physics literature: undirected animals.
m Links with classical percolation.

m Directed animal: “partly exactly solvable model”.

(Very incomplete) biography

Study of D.A. via hard sphere gaz model
» Dhar (1982); Dhar Farni Barna (1982); Nadal (1982); Derrida Nadal
Vannimenus (1982), Hakim Nadal (1983), Dhar (1983); Bousquet-Mélou,
Conway (1996); Bousquet-Melou (1998); Le Borgne, Marckert (2007); Albenque
(2009)

Study of D.A. via des heap of pieces — bijections with trees

» Viennot (1986); Betrema, Penaud (1993); Corteel, Denise et
Gouyou-Beauchamps (2000); Bacher (2009)



Directed animals on the square lattice

Goal of the talk

What does a large uniformly sampled random directed animal look like around
the origin 7

» We study the local limit of D.A. rooted at the origin.
(probabilistic vs combinatorics approach)
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Set of dominoes where one domino is on the floor and
every other domino is supported by a domino under it

Pyramid <«



Viennot’s heap of pieces

m Rotate N? by 45 degrees.
m Replace each vertex by a domino (dimer) of height 1 and width 2 — ¢,
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pyramid where all dominoes
have non negative x-coordinates

half-pyramid <=
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Viennot’s heap of pieces : the “push-up” operation

m Lifting up a domino: bring along the pyramid sitting over it.
= Generating series via the pyramid/half pyramid decomposition.

This is a pyramid

/
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Viennot’s heap of pieces : the “push-up” operation

m Lifting up a domino: bring along the pyramid sitting over it.

m Reverse operation: let domino drop "from infinity”.

= construct an infinite pyramid by dropping dominos from co...




Local limits



Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xx) such that
Xep1 — Xk € Z° U {1}.

Xk > minj<x X; — 1 i.e. x never beats its current infimum by more than 1.

Example.

T65-43-2-101234567



Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xx) such that
Xep1 — Xk € Z° U {1}.

Xk > minj<x X; — 1 i.e. x never beats its current infimum by more than 1.

Example.

© @

T65-43-2-101234567



Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xx) such that
Xep1 — Xk € Z° U {1}.

Xk > minj<x X; — 1 i.e. x never beats its current infimum by more than 1.

Example.

T65-43-2-101234567



Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xx) such that
Xep1 — Xk € Z° U {1}.

Xk > minj<x X; — 1 i.e. x never beats its current infimum by more than 1.

Example.

5
®®

T65-43-2-101234567




Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xx) such that
Xep1 — Xk € Z° U {1}.

Xk > minj<x X; — 1 i.e. x never beats its current infimum by more than 1.

Example.

v
®®©
©

T65-43-2-101234567




Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xx) such that
Xep1 — Xk € Z° U {1}.

Xk > minj<x X; — 1 i.e. x never beats its current infimum by more than 1.

Example.

;
¥o

®
®®

T65-43-2-101234567




Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xx) such that
Xep1 — Xk € Z° U {1}.

Xk > minj<x X; — 1 i.e. x never beats its current infimum by more than 1.

Example.

®®

%

©)

T65-43-2-101234567



Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xx) such that
Xep1 — Xk € Z° U {1}.

Xk > minj<x X; — 1 i.e. x never beats its current infimum by more than 1.

Example.

©)

© e
®®

©)

T65-43-2-101234567



Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xx) such that
Xep1 — Xk € Z° U {1}.

Xk > minj<x X; — 1 i.e. x never beats its current infimum by more than 1.

Example.

SONC
®@®®@
®

T65-43-2-101234567




Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))
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Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xx) such that
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Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xx) such that
Xep1 — Xk € Z° U {1}.
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Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xx) such that

Xx+1 — Xk € Z U {1}

Xk > minj<x X; — 1 i.e. x never beats its current infimum by more than 1.

Example.
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Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xx) such that
Xep1 — Xk € Z° U {1}.

Xk > minj<x X; — 1 i.e. x never beats its current infimum by more than 1.

Example.

Reconstruction of the path from the ordering of the vertices
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Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xx) such that
Xep1 — Xk € Z° U {1}.

Xk > minj<k x; — 1 i.e. x never beats its current infimum by more than 1.

Remarks

m |A| = |x|. Bijections between paths and DA of same size.
m Bijection between half-pyramids and non-negative paths.
m Extends into a bijection between infinite paths and simple infinite DA.

m Encoding similar to Lukasiewicz's encoding for trees
(Gouyou Beauchamps - Viennot ~ Dyck’s encoding for trees)



The animal walk

(X»n) sequence of i.i.d random variables with law
ok
P(X, = k) = ?lkeZiU{l}-
Remark:
m X, = +1 with probability 2/3,
m X, = —Geom(1/2) with probability 1/3.



The animal walk

(X»n) sequence of i.i.d random variables with law

2k
]P)(Xn == k) == ?lkEZiU{l}'

Remark:
m X, = +1 with probability 2/3,
m X, = —Geom(1/2) with probability 1/3.

The animal walk is the random walk S with S = 0 and

Sp=X1+...+ X,

E[S,] = 0, the walk is recurrent and we define

T =inf{n:S, <0}



The animal walk

Proposition

A random uniform half-pyramid with n vertices can be sampled from an

excursion of the animal walk (So, ..., S-—1) conditioned on {T = n}
half-pyramid
Animal walk S @)

7 A O
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O
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first passage time 1 —% ° O



The animal walk

Proposition

A random uniform half-pyramid with n vertices can be sampled from an
excursion of the animal walk (So, ..., S-—1) conditioned on {T = n}

half-pyramid

Animal walk S

v
first passage time 1 —% d

o, O
0000
OOOOOO

Proof.

Given a path 0 = xo, x1, ..., %, = —1 with xj41 — x; € Z* U {1},

OXi —Xi—1 2Xn—xo 1
P(50:X0751:X1,... ,,—X,, H]P(X =Xi—Xj— 1)—H 3 = 3n = 23n
i=1 !

O



The Boltzmann half-pyramid

Définition

A Boltzmann half-pyramid (BHP) is a random directed animal constructed
from a "free” positive excursion (So, Si1,...,S-—1) of the animal walk.

o I— _M
» BHP = critical half-pyramid (<= G.W. Geom(%)). |
» “building block” to construct local limits. *T

» There is no Boltzmann pyramid ! -




Local limit: the uniform infinite pyramid (UIP)

Theorem (Hénard, Maurel-Segala, S. (24))

The local limit (rooted at 0) of a uniformly sampled directed animal as its size
goes to infinity exists and is constructed by piling up i.i.d. BHP's.

e,

» The limit is non-trivial, random and simple a.s.

» "Kesten decomposition” of this critical object:
m backbone = 0,—-1,-2,.... ‘
m BHP’s = finite pyramids grafted on the backbone.

» Proof: Directly on the animal walk (using hitting time estimates).



Local limit: the uniform infinite half-pyramid (UIHP)

Theorem (Hénard, Maurel-Segala, S. (24))

The local limit of a uniformly sampled non-positive half-pyramid is

constructed by piling up i.i.d. BHP’s with the n-th BHP conditioned to have
width at most n.

200
10

» Doob'’s conditioning of the animal walk (h-transform). \

» “Kesten decomposition”:
m backbone (épine) : 0,—1,—-2,....

m conditioned BHP's: finite pyramids grafted on the backbone




Local limit: the uniform infinite half-pyramid (UIHP)

Theorem (Hénard, Maurel-Segala, S. (24))

The local limit of a uniformly sampled non-negative half-pyramid is
constructed by piling up i.i.d. BHP’s on top of the animal obtained from the
animal walk conditioned to stay non-negative.

iid. BHP's

in d

with probability 1/2

» It is the limit of BHP's when their size grow to co.
m Partie bleu: start of excursion.

m Partie rouge: end of excursion

. .. 100 +

“infinite” excursion

» Main tool: Martingales!

on the animal walk S on DA kernels

Doob's conditionning } o [ Doob'’s conditionning }



Spatial Markov property and intertwining



Markov property of the uniform infinite pyramid (UIP)

Theorem (Hénard, Maurel-Segala, S. (24))

The UIP is a Markov process when sliced layer by layer.
» Particle system with product interaction between neighboring vertices:

n—1
77(X17 ce 7X") = H(Xi+1 — Xj — 1)
i=1
77(An+1)
P(A Ap) = ———7"—"—
( n+1| n) 3|A"|7](An)
V.
) UIP A ®
_11'7‘\ ey
ex) /:7\:_/ /:?\\\_,
Anir \'::7\\—1 o o

a2 -0 00

76-5-4-3-2-101234567




Markov property of the uniform infinite pyramid (UIP)

Theorem (Hénard, Maurel-Segala, S. (24))

The UIP is a Markov process when sliced layer by layer.
» Particle system with product interaction between neighboring vertices:
n—1
n(x, - xn) = [ [ (xivn = — 1)
i=1
n(Ant1)
P(Ap+1]An) = —F———
( n+1| n) 3|A"|7](An)
y
Anit
A, ® © @ ®

Ty z3-22 zi—z3

N(Ap) = (w2 — 21-1) (23 — w2~ 1)(wg — 23-1)

Ani1)
—_— P(A7L+1 ‘An) = 772 o
N(Ans1) = (g2 = y1= D)z = y2—1) (¥ — y3—1)(ys — ya—1) 3n(An)




Markov property of the uniform infinite pyramid (UIP)

Theorem (Hénard, Maurel-Segala, S. (24))

The UIP is a Markov process when sliced layer by layer.
» Particle system with product interaction between neighboring vertices:
n—1
n(x, - xn) = [ [ (xivn = — 1)
i=1
_ 77(An+1)
BlAni1lAn) = 30T can)
y
Anit ®
A, ® © @ ®
N(A) = (w2 — 21-1) (25 — 22— 1) (24 — 23-1)
' — ( 7L+1‘A7l) 3477(”:{71;

N(Ans1) = (42 = 1= 1) (s — v2—1)(ya — ys—1)(vs —va—1)

m Similar results for the Boltzmann pyramid and half-pyramid.
m The kernel identity is non-trivial.

m “Long-range” interaction.




Branching-annihilating particle system

Consider a system with(©O and @ particles such that:
Each particle (at i) reproduces independently, creating particles at i—1, 7, i+1 s.t.

o (5) =r(i) =r($) 4 oo 2(2) -

Particles of opposite colors annihilate when they collide.
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Branching-annihilating particle system

Consider a system with(©O and @ particles such that:
Each particle (at i) reproduces independently, creating particles at i—1, 7, i+1 s.t.

o (5) =r(i) =r($) 4 oo 2(2) -

Particles of opposite colors annihilate when they collide.

~, ‘ -, v
~ / N /
N B

Q\

O m function of a Markov process is Markov

= Intertwining of kernels.
O O/ \O/ = Intertwining of red/blue particles.
Q/ '\Q/ m The red particle can also move!
v m The long-range interaction between blue
O vertices is mediated by the “invisible red
AN particles”.
O m Reminiscent of

» Dyson’s Brownian motion

\ » Pitman’s theorem.
This is the UIP !



Thank you for your attention!
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m Lifting up a domino: bring along the pyramid sitting over it.

This is a pyramid
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half-pyramid
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Viennot’s heap of pieces : the “push-up” operation

m Lifting up a domino: bring along the pyramid sitting over it.

m Reverse operation: let domino drop "from infinity”.

Pyramid / half-pyramid decomposition

pyramid

half-pyramid

76-5-4-3-2-101234567
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Generating series

P(z) = Z ZI7! et H(z) = Z ZIH
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U OEIS A001006 (Motzkin)
1—z—4/(1+2)(1—-3z)
W W e

r 3"
[H]n ~ C ny/n

» We can count directed animals according to their size... Now we want to
consider infinite directed animals !



