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Directed animals on the square lattice

I [directed] animal: finite connected set of an [oriented] graph G .

But here we will only consider G = N2. . .

Directed animal (pyramid)

Finite set A ⊂ N2 such that:

1 0 ∈ A (the source).

2 Any other site of A has a neighbor directly on its left or directly below it.

This is a directed animal



Directed animals on the square lattice

I [directed] animal: finite connected set of an [oriented] graph G .

But here we will only consider G = N2. . .

Directed animal (pyramid)

Finite set A ⊂ N2 such that:

1 0 ∈ A (the source).

2 Any other site of A has a neighbor directly on its left or directly below it.

has no neighbour left or below

This is not a directed animal



Directed animals on the square lattice

Why directed animals ?

Appears in the physics literature: undirected animals.

Links with classical percolation.

Directed animal: “partly exactly solvable model”.

(Very incomplete) biography

1 Study of D.A. via hard sphere gaz model

I Dhar (1982); Dhar Farni Barna (1982); Nadal (1982); Derrida Nadal

Vannimenus (1982), Hakim Nadal (1983), Dhar (1983); Bousquet-Mélou,

Conway (1996); Bousquet-Melou (1998); Le Borgne, Marckert (2007); Albenque

(2009)

2 Study of D.A. via des heap of pieces → bijections with trees

I Viennot (1986); Betrema, Penaud (1993); Corteel, Denise et

Gouyou-Beauchamps (2000); Bacher (2009)



Directed animals on the square lattice

Goal of the talk

What does a large uniformly sampled random directed animal look like around
the origin ?

I We study the local limit of D.A. rooted at the origin.
(probabilistic vs combinatorics approach)



Viennot’s heap of pieces

Rotate N2 by 45 degrees.

Replace each vertex by a domino (dimer) of height 1 and width 2− ε.
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Viennot’s heap of pieces

Rotate N2 by 45 degrees.

Replace each vertex by a domino (dimer) of height 1 and width 2− ε.

Pyramid ⇐⇒ Set of dominoes where one domino is on the floor and
every other domino is supported by a domino under it

0 1 2 3 4 5 6 7-1-2-3-4-5-6-7



Viennot’s heap of pieces

Rotate N2 by 45 degrees.

Replace each vertex by a domino (dimer) of height 1 and width 2− ε.

half-pyramid ⇐⇒ pyramid where all dominoes
have non negative x-coordinates

0 1 2 3 4 5 6 7-1-2-3-4-5-6-7



Viennot’s heap of pieces : the “push-up” operation

Lifting up a domino: bring along the pyramid sitting over it.

Reverse operation: let domino drop ”from infinity”.
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Viennot’s heap of pieces : the “push-up” operation

Lifting up a domino: bring along the pyramid sitting over it.
⇒ Generating series via the pyramid/half pyramid decomposition.

Reverse operation: let domino drop ”from infinity”.

This is a pyramid
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Viennot’s heap of pieces : the “push-up” operation

Lifting up a domino: bring along the pyramid sitting over it.

Reverse operation: let domino drop ”from infinity”.

⇒ construct an infinite pyramid by dropping dominos from ∞...



Local limits



Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xk) such that

1 xx+1 − xk ∈ Z∗− ∪ {1}.

2 xk ≥ mini<k xi − 1 i.e. x never beats its current infimum by more than 1.

Example.

0 1 2 3 4 5 6 7-1-2-3-4-5-6-7
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Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xk) such that
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Directed animals are in bijection with paths (xk) such that

1 xx+1 − xk ∈ Z∗− ∪ {1}.

2 xk ≥ mini<k xi − 1 i.e. x never beats its current infimum by more than 1.

Example.
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Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xk) such that

1 xx+1 − xk ∈ Z∗− ∪ {1}.

2 xk ≥ mini<k xi − 1 i.e. x never beats its current infimum by more than 1.

Example.
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Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xk) such that

1 xx+1 − xk ∈ Z∗− ∪ {1}.

2 xk ≥ mini<k xi − 1 i.e. x never beats its current infimum by more than 1.
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Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xk) such that
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Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xk) such that

1 xx+1 − xk ∈ Z∗− ∪ {1}.
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Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xk) such that

1 xx+1 − xk ∈ Z∗− ∪ {1}.

2 xk ≥ mini<k xi − 1 i.e. x never beats its current infimum by more than 1.
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Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xk) such that

1 xx+1 − xk ∈ Z∗− ∪ {1}.

2 xk ≥ mini<k xi − 1 i.e. x never beats its current infimum by more than 1.

Example.

0 1 2 3 4 5 6 7-1-2-3-4-5-6-7
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Reconstruction of the path from the ordering of the vertices



Path encoding of a directed animal

Proposition (Hénard, Maurel-Segala, S. (24))

Directed animals are in bijection with paths (xk) such that

1 xx+1 − xk ∈ Z∗− ∪ {1}.

2 xk ≥ mini<k xi − 1 i.e. x never beats its current infimum by more than 1.

Remarks

|A| = |x |. Bijections between paths and DA of same size.

Bijection between half-pyramids and non-negative paths.

Extends into a bijection between infinite paths and simple infinite DA.

Encoding similar to Lukasiewicz’s encoding for trees
(Gouyou Beauchamps - Viennot ≈ Dyck’s encoding for trees)



The animal walk

(Xn) sequence of i.i.d random variables with law

P(Xn = k) =
2k

3
1k∈Z∗

−∪{1}.

Remark:

Xn = +1 with probability 2/3,

Xn = −Geom(1/2) with probability 1/3.

The animal walk is the random walk S with S0 = 0 and

Sn = X1 + . . .+ Xn.

E [Sn] = 0, the walk is recurrent and we define

τ = inf{n : Sn < 0}
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The animal walk

Proposition

A random uniform half-pyramid with n vertices can be sampled from an
excursion of the animal walk (S0, . . . , Sτ−1) conditioned on {τ = n}

n
first passage time τ

Animal walk S

half-pyramid

Proof.

Given a path 0 = x0, x1, . . . , xn = −1 with xi+1 − xi ∈ Z∗− ∪ {1},

P(S0 =x0,S1 =x1, . . . , Sn =xn) =
n∏

i=1

P(Xi =xi−xi−1) =
n∏

i=1

2xi−xi−1

3
=

2xn−x0

3n
=

1

2.3n
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The Boltzmann half-pyramid

Définition

A Boltzmann half-pyramid (BHP) is a random directed animal constructed
from a ”free” positive excursion (S0, S1, . . . , Sτ−1) of the animal walk.

I BHP = critical half-pyramid (⇐⇒ G.W. Geom( 1
2

)).

I “building block” to construct local limits.

I There is no Boltzmann pyramid !



Local limit: the uniform infinite pyramid (UIP)

Theorem (Hénard, Maurel-Segala, S. (24))

The local limit (rooted at 0) of a uniformly sampled directed animal as its size
goes to infinity exists and is constructed by piling up i.i.d. BHP’s.

I The limit is non-trivial, random and simple a.s.

I ”Kesten decomposition” of this critical object:

backbone = 0,−1,−2, . . ..

BHP’s = finite pyramids grafted on the backbone.

I Proof: Directly on the animal walk (using hitting time estimates).



Local limit: the uniform infinite half-pyramid (UIHP)

Theorem (Hénard, Maurel-Segala, S. (24))

The local limit of a uniformly sampled non-positive half-pyramid is
constructed by piling up i.i.d. BHP’s with the n-th BHP conditioned to have
width at most n.

I Doob’s conditioning of the animal walk (h-transform).

I “Kesten decomposition”:

backbone (épine) : 0,−1,−2, . . ..

conditioned BHP’s: finite pyramids grafted on the backbone



Local limit: the uniform infinite half-pyramid (UIHP)

Theorem (Hénard, Maurel-Segala, S. (24))

The local limit of a uniformly sampled non-negative half-pyramid is
constructed by piling up i.i.d. BHP’s on top of the animal obtained from the
animal walk conditioned to stay non-negative.

I It is the limit of BHP’s when their size grow to ∞.

Partie bleu: start of excursion.

Partie rouge: end of excursion

I Main tool: Martingales![
Doob’s conditionning
on the animal walk S

]
↔

[
Doob’s conditionning

on DA kernels

]
“infinite” excursion

Walk S conditioned ≥ 0

(in decreasing x-ordering)
i.i.d. BHP’s sprinkled with probability 1/2



Spatial Markov property and intertwining



Markov property of the uniform infinite pyramid (UIP)

Theorem (Hénard, Maurel-Segala, S. (24))

The UIP is a Markov process when sliced layer by layer.
I Particle system with product interaction between neighboring vertices:

η(x1, . . . , xn) =

n−1∏
i=1

(xi+1 − xi − 1)

P(An+1|An) =
η(An+1)

3|An|η(An)

0 1 2 3 4 5 6 7-1-2-3-4-5-6-7

An

?

? ?

?

?

? ?

?

?

?UIP A

An+1



Markov property of the uniform infinite pyramid (UIP)

Theorem (Hénard, Maurel-Segala, S. (24))

The UIP is a Markov process when sliced layer by layer.
I Particle system with product interaction between neighboring vertices:

η(x1, . . . , xn) =

n−1∏
i=1

(xi+1 − xi − 1)

P(An+1|An) =
η(An+1)

3|An|η(An)

An+1

An x1 x2 x3 x4

x2−x1 x3−x2 x4−x3

η(An) = (x2 − x1−1)(x3 − x2−1)(x4 − x3−1)

η(An+1) = (y2 − y1−1)(y3 − y2−1)(y4 − y3−1)(y5 − y4−1)
P(An+1|An) =

η(An+1)

34η(An)

y1 y2 y3 y4 y5

y2−y1 y3−y2 y4−y3 y5−y4



Markov property of the uniform infinite pyramid (UIP)

Theorem (Hénard, Maurel-Segala, S. (24))

The UIP is a Markov process when sliced layer by layer.
I Particle system with product interaction between neighboring vertices:

η(x1, . . . , xn) =

n−1∏
i=1

(xi+1 − xi − 1)

P(An+1|An) =
η(An+1)

3|An|η(An)

Similar results for the Boltzmann pyramid and half-pyramid.

The kernel identity is non-trivial.

“Long-range” interaction.

An+1

An x1 x2 x3 x4

x2−x1 x3−x2 x4−x3

η(An) = (x2 − x1−1)(x3 − x2−1)(x4 − x3−1)

η(An+1) = (y2 − y1−1)(y3 − y2−1)(y4 − y3−1)(y5 − y4−1)
P(An+1|An) =

η(An+1)

34η(An)

y1 y2 y3 y4 y5

y2−y1 y3−y2 y4−y3 y5−y4



Branching-annihilating particle system

Consider a system with and particles such that:

1 Each particle (at i) reproduces independently, creating particles at i−1, i , i+1 s.t.

P
( )

= P
( )

= P
( )

=
1

3
and P

( )
= 1

2 Particles of opposite colors annihilate when they collide.
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Branching-annihilating particle system

Consider a system with and particles such that:

1 Each particle (at i) reproduces independently, creating particles at i−1, i , i+1 s.t.

P
( )

= P
( )

= P
( )

=
1

3
and P

( )
= 1

2 Particles of opposite colors annihilate when they collide.

function of a Markov process is Markov
=⇒ Intertwining of kernels.
=⇒ Intertwining of red/blue particles.

The red particle can also move!

The long-range interaction between blue
vertices is mediated by the “invisible red
particles”.

Reminiscent of
I Dyson’s Brownian motion
I Pitman’s theorem.

This is the UIP !



Thank you for your attention!
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Generating series

P(z) =
∑

pyramids P

z |P| et H(z) =
∑

half-pyramids H

z |H|

I We can count directed animals according to their size... Now we want to
consider infinite directed animals !

P(z) = 1
2

(
1+z

1−3z
− 1
)

H(z) =
1−z−
√

(1+z)(1−3z)

2z

OEIS A005773

OEIS A001006 (Motzkin)

[P]n ∼ C 3n√
n

[H]n ∼ C ′ 3n

n
√
n


