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Basic definitions: Tessellations

> A tessellation T in R? is a system of convex
polytopes (cells), covering the space and having
disjoint interiors.
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» T is called normal if any F € Fi(T) is contained in exactly d — k + 1 cells.
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Poisson-Voronoi tessellation: construction

Let i be a PPP in R? with intensity measure v Leby, v > 0.
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Poisson-Voronoi tessellation: construction

Let  be a PPP in R? with intensity measure  Leby, v > 0.

Voronoi cell of (nuclei) v € n: V(v,n) :={z€R: ||z —v|? < ||z—V|]? for all v/ € n}.

Poisson-Voronoi tessellation (of intensity v): V4 := {V(v,n): v € n}.
Fact: Vg is almost surely face-to-face, normal random tessellation and Vy is stationary.

1950's - current: Baumstark, Blaszczyszyn, Calka, Hug, Kendall, Last, Mgller, Mecke,
Miles, Muche, Reitzner, Schneider, Stoyan, Zhang and many others.
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Poisson-Delaunay tessellation (definition via duality)

Poisson-Delaunay tessellation Dy is dual model of Poisson-Voronoi tessellation Vy.
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duality
E—

Poisson-Delaunay tessellation Dy is dual model of Poisson-Voronoi tessellation Vy.
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Poisson-Voronoi tessellation: graphical interpretation

Voronoi cell of (nuclei) v € n:
V(v,n) ={zeR?: ||z—v|[* < |lz— V|? forall v/ € n}.
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Poisson-Voronoi tessellation: graphical interpretation

Generalized Voronoi (Laguerre) cell of (v, h) € &:

V((v,h), &) :={zeR |lz—v|]> +h<|z—V|*+H forall (V',h) €€}
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Motivation: sectional properties of Poisson-Voronoi tessellation

Given a /-dimensional affine subspace L, C RY define the sectional tessellation

TNL Z:{tﬂLgi tET}.
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Given a /-dimensional affine subspace L, C RY define the sectional tessellation
TNl :={tNL:teT}

Question: Is sectional Poisson-Voronoi tessellation V; N L, a Voronoi tessellation?

3D Poisson-Voronoi tessellation 2D Poisson-Voronoi tessellation
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Given a /-dimensional affine subspace L, C RY define the sectional tessellation
TNl :={tNL:teT}

Question: Is sectional Poisson-Voronoi tessellation V; N L, a Voronoi tessellation?

3D Poisson-Voronoi tessellation 2D Poisson-Voronoi tessellation

Answer: " The sectional Poisson-Voronoi tessellation is not a Voronoi tessellation” (Chiu,
Van De Weygaert, Stoyan'96).
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Motivation: sectional properties of Poisson-Voronoi tessellation

Given a /-dimensional affine subspace L, C RY define the sectional tessellation
TNL:= {tﬂl_g: tET}.

Question: Is sectional Poisson-Voronoi tessellation V; N Ly a Voronoi tessellation?

Answer: " The sectional Poisson-Voronoi tessellation is not a Voronoi tessellation” (Chiu,
Van De Weygaert, Stoyan'96). It is a Laguerre tessellation! But which one?
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Generalized Voronoi tessellation (Laguerre tessellation)

Let & be a PPP in RY x E where E is R, R>q or R<o with intensity measure

(B x A) / / 1{v € B}1{h € A}f(h)dvdh.
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Generalized Voronoi tessellation (Laguerre tessellation)

Let & be a PPP in RY x E where E is R, R>p or R<o with intensity measure

(B x A) / / 1{v € B}1{h € A}f(h)dvdh.

Laguerre cell of (v, h) € &f:

V((v,h), &) ={zeR%: |lz—v|>+h<|z=V|*+ A forall (V',h) e &

Laguerre tessellation: Lq4(f) := {V((v, h),&f): (v, h) € & ,intV((v, h),&f) # 0},
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Generalized Voronoi tessellation (Laguerre tessellation)

Let & be a PPP in RY x E where E is R, R>g or R with intensity measure
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Generalized Voronoi tessellation (Laguerre tessellation)

Let & be a PPP in RY x E where E is R, R>p or R<o with intensity measure

1(B x A) = /Rd/E1{v € B}1{h € A}f(h)dvdh.

Laguerre cell of (v, h) € &f:

V((v,h), &) ={zeR: |z=v|P+h<|lz— V|*+ K forall (V) € &

Laguerre tessellation: Lq(f) := {V/((v, h),&f): (v, h) € &, intV/((v, h), &) # 0},
Fractional integral of f of order a > 0 is:

t

(1F)(¢) := r(a)fl/ f(x)(t — X)aildx

—o0
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Generalized Voronoi tessellation (Laguerre tessellation)

Let & be a PPP in RY x E where E is R, R>p or R<o with intensity measure

B x A) = 1 B}1{h € A}f(h)dvdh.
n(BxA) = [ [ 1y e Bl e ARy
Laguerre cell of (v, h) € &:
V((v,h), &) ={zeR": lz—v|> +h<|z=V|*+ K forall (v',h') € &}.
Laguerre tessellation: Lq(f) := {V/((v, h),&f): (v, h) € &, intV/((v, h), &) # 0},

Fractional integral of f of order a > 0 is:
t

(I*F)(t) :== r(a)_l/ f(x)(t— x)a_ldx

— o0

Theorem (A.G., M. in Wolde-Liibke, 2024+)

Let f € LL(E) be such that (12+1f)(t) < oo for all t € E
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Let & be a PPP in RY x E where E is R, R>p or R<o with intensity measure
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(I*F)(t) :== r(a)_l/ f(x)(t— X)O‘_ldx
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Theorem (A.G., M. in Wolde-Liibke, 2024+)

Let f € Li,.(E) be such that (I%“f)(t) < oo for all t € E and in case of E = R<o we
additionally assume that there is € > 0 such that for sufficiently big n € N we have
(I5TF)(—=1/n) > n.Then

» L4(f) is a random face-to-face normal stationary tessellation;

» (L4(f))* is a random face-to-face simplicial stationary tessellation.
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Generalized Voronoi tessellation (Laguerre tessellation)

Fractional integral of f of order a > 0 is:
t

(1F)(t) := r(a)—l/ F(x)(t — x)* Tdx

— 00

Theorem (A.G., M. in Wolde-Liibke, 2024+)

Let f € Li,.(E) be such that (I%“f)(t) < oo for all t € E and in case of E = R<q we
additionally assume that there is € > 0 such that for sufficiently big n € N we have

(I5TF)(—=1/n) > n.Then
» L4(f) is a random face-to-face normal stationary tessellation;

> (Lq4(f))" is a random face-to-face simplicial stationary tessellation.
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Generalized Voronoi tessellation (Laguerre tessellation)

Fractional integral of f of order a > 0 is:
t

(1F)(t) := r(a)—l/ F(x)(t — x)* Tdx

— 00

Theorem (A.G., M. in Wolde-Liibke, 2024+)

Let f € Li,.(E) be such that (I%“f)(t) < oo for all t € E and in case of E = R<q we
additionally assume that there is € > 0 such that for sufficiently big n € N we have

(I5TF)(—=1/n) > n.Then
» L4(f) is a random face-to-face normal stationary tessellation;

> (Lq4(f))" is a random face-to-face simplicial stationary tessellation.

P((v, h) & W(f)) = exp(— (13 1F)(h))
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> If f € L'(R), then & is an independent marking of a homogeneous PPP on R?
(Lautensack, Zuyev'08).
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> Gaussian model: take f(h) := e”

V4 1= L4(f) is called Gaussian-Voronoi tessellation;
Dy := (Lq(f))" is called Gaussian-Delaunay tessellation.
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> B-model: f(h):= ca5h’lps0, B> —1

Va.g = L4(f) is called 8-Voronoi tessellation;
Da,s = (L4(f))" is called 3-Delaunay tessellation.
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> B'-model: f(h) = c}z(—h)""1lhco, B> Bc(d) :=(d +2)/2

Vi = La(f) is called 3'-Voronoi tessellation;
Dy 5 := (L4(f))* is called §'-Delaunay tessellation.
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> B'-model: f(h) = c}5(—h)""lhco, B> Bc(d) :=(d +2)/2

Vi g = La(f) is called 5’-Voronoi tessellation;
D) 5 = (L4(f))" is called §'-Delaunay tessellation.
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Sectional properties

Question: Is sectional Poisson-Voronoi tessellation V; N Ly a Voronoi tessellation?

Answer: " The sectional Poisson-Voronoi tessellation is not a Voronoi tessellation” (Chiu,
Van De Weygaert, Stoyan'96).
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Question: Is sectional Poisson-Voronoi tessellation V; N Ly a Voronoi tessellation?

Answer: " The sectional Poisson-Voronoi tessellation is not a Voronoi tessellation” (Chiu,
Van De Weygaert, Stoyan'96). It is S-Voronoi tessellation!

Theorem (A.G., Z. Kabluchko and C. Thale, 2024)

For any ¢-dimensional affine subspace L, we have
VanLle 2 Vi, —1+(d—t)/2 (up to isometry)

(here intensity of Vy is chosen to be v = n%/r(%))
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Answer: " The sectional Poisson-Voronoi tessellation is not a Voronoi tessellation” (Chiu,
Van De Weygaert, Stoyan'96). It is S-Voronoi tessellation!

Theorem (A.G., Z. Kabluchko and C. Thale, 2024)

For any ¢-dimensional affine subspace L, we have
VanLle 2 Vi, —1+(d—t)/2 (up to isometry)

(here intensity of Vy is chosen to be v = n%/r(%))

More generally:

Theorem (A.G. and M. in Wolde-Liibke, 2024+)

For any ¢-dimensional affine subspace L, we have

d d=t -t .
La(f)NLe=Lo(mZ (17 1)) (up to isometry)
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Sectional properties

Question: Is sectional Poisson-Voronoi tessellation V; N Ly a Voronoi tessellation?

Answer: " The sectional Poisson-Voronoi tessellation is not a Voronoi tessellation” (Chiu,
Van De Weygaert, Stoyan'96). It is S-Voronoi tessellation!

Theorem (A.G., Z. Kabluchko and C. Thale, 2024)

For any ¢-dimensional affine subspace L, we have
VaNLe= V[ —14+(d—0)/2 (up to isometry)

(here intensity of Vy is chosen to be v = n%/r(%))

More generally:

Theorem (A.G. and M. in Wolde-Liibke, 2024+)

For any ¢-dimensional affine subspace L, we have

d d=t -t .
La(f)NLe=Lo(mZ (17 1)) (up to isometry)

As a corollary:

VapgNLe= V£B+d 0/2 VipgNLle= Véﬁ(d 0)/2 VanLe LV,
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Characteristics of stationary random tessellation

> 7T is a stationary random tessellation.
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Characteristics of stationary random tessellation

> 7T is a stationary random tessellation.

» k-cell intensity of 7:

W) =E 3 1z(F.T) 0,1,

FeF(T)

where z : {polytopes} x {tessellations} — R be s.t.
z(t+x, T +x) = z(t, T) + x for all x € R?.
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Characteristics of stationary random tessellation

> 7T is a stationary random tessellation.

» k-cell intensity of 7:

W) =E 3 1z(F.T) 0,1,

FeF(T)

where z : {polytopes} x {tessellations} — R be s.t.
z(t+x, T +x) = z(t, T) + x for all x € R?.

» Typical cell of 7: Z(T) is a random polytope with distribution

PYP(-) = E > 1{t - z(t, T) € -}.

’Yd(T) teT: z(t,T)€[0,1]9

For £4(&) we choose v as a center of a cell V((v, h),£) and for (L4(£))* as a center we
choose a corresponding vertex of L4(§).
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» 7T is a stationary random tessellation.

» k-cell intensity of 7:

WT)=E 3 1z(F.T) 0,1,

FeF(T)

where z : {polytopes} x {tessellations} — R be s.t.
z(t+x, T +x) = z(t, T) + x for all x € R?.

» Typical cell of 7: Z(T) is a random polytope with distribution

PYP(-) = E > 1{t - z(t,T) € -}.

’Yd(T) teT: z(t,T)€[0,1]¢

For £4(&) we choose v as a center of a cell V((v, h), &) and for (L4(£))* as a center we
choose a corresponding vertex of L4(§).
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Stochastic representation of the typical cell

Let 7 be one of the following tessellations Dy, Dd,5, Dy, g, Dy.

Anna Gusakova Random (Laguerre) tessellations 11/18



Stochastic representation of the typical cell

Let 7 be one of the following tessellations Dy, Dd,5, Dy, g, Dy.

Theorem (A.G., Z. Kabluchko and C.Thile, 2022)

We have Z(T) ZR. conv(Y,..., Ygy1) := conv(RY, ..., RYq411);
(a) (Ya,..., Yay1) are random points, whose joint distribution is

d+1
const - Vol(conv(y, . .., Yd+1)) H F(dy;);
i=1
(b) R is a random variable on (0, co0) with distribution G;
(c) R is independent of (Y4, ..., Yat1),
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Stochastic representation of the typical cell

Let 7 be one of the following tessellations Dy, Dd,5, Dy, g, Dy.

Theorem (A.G., Z. Kabluchko and C.Thile, 2022)

We have Z(T) £ R - conv(V4,. .., Yai1) := conv(RY4, ..., RYa11);
(a) (Ya,..., Ya41) are random points, whose joint distribution is

d+1
const - Vol(conv(y1, . . ., Yd+1)) H F(dyi);

i=1
(b) R is a random variable on (0, co0) with distribution G;
(c) R is independent of (Yi,..., Ya+1),

where

F = Unif(S°Y), G(dr) = r" e " dr, T = Dg;
F(dx) = ca,p(1 = x| Laa(lxll)dx,  G(dr) = AV F2EDI =™ g, - p o,
Fdx) = ¢ 5(1 + [Ix][?) " dx, G(dr) = ASTD’ DB =70y
F(dx) = (2m) "¢/ MIP /2, G =6, T =Dy
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Stochastic representation of the typical cell

Let 7 be one of the following tessellations Dy, Dd,5, Dy, g, Dy.

Theorem (A.G., Z. Kabluchko and C.Thile, 2022)

We have Z(T) £ R - conv(V4,. .., Yai1) := conv(RY4, ..., RYa11);

(a) (Ya,..., Ya41) are random points, whose joint distribution is

d+1
const - Vol(conv(yi, . .., Yd+1)) H F(dyi);
i=1
(b) R is a random variable on (0, co) with distribution G;
(c) R is independent of (Yi,..., Ya+1),
where

Case of Poisson-Delaunay tessellation T = Dy is well-know (Miles'74, Mgller'94).
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New formulas for the classical Poisson-Voronoi tessellation

Combining combinatorial relations between different characteristics of stationary random
tessellation and properties of 8-random simplices we also get:

Theorem (A.G., Z. Kabluchko and C. Thale, 2024)
For any 0 < j < d we have

i

9 (d—jt1)(d—1)+1 [(d—j+3)
( (Vd)) ( 7+1)) \J/Trd(d—j)! r(fﬂ)d

/ (cosh u)~(=FDII= [\Fr((‘”j; D I di/ou(cosh v)d’ldv] dijdu.

V; is j-th intrinsic volume, in particular Vy is the volume and %Vd_l is the surface area.

v
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Connection between the models

Classical models: V4, Dy

Homogeneous
PPP in RY, e.g.

f = dop.

B'-models: V; 5, Dy 5

f(h) = cyzh"”,
h>0,
B € (d/2+1,00).

Anna Gusakova

B-models: Vq 3, Da,g

f(h) = cq gh®,
h>0,
/B S (—1,00)

Gaussian-models: Vg4, Dy

f(h) = e".
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Connection between the models

Classical models: V4, Dy B-models: Vy g, Dy,
Homogeneous
PPP in RY, eg. f(h) = ca,sh”,
f = do. o1 h >0,
/B € (—1,00)

J{ B—00  (when scaled by /23)

B'-models: V; 5, Dy 5 Gaussian-models: Vg, Dy

) =cysh™ | (b ="

_—
(when scaled by 1/23)

h>0,
B € (d/2+1,00).
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Connection between the models (convergence of typical cells)

Classical models: V4, Dy

Homogeneous
PPP in RY, e.g.

f = dop.

B'-models: V; 5, Dy 5

f(h) = cyzh"”,
h>0,
B € (d/2+1,00).

Anna Gusakova

B——1

B-models: Vq 3, Da,g

f(h) = cq gh®,
h>0,
/B S (—1,00)

J{ B—00  (when scaled by /23)

B—o0

_—
(when scaled by 1/23)

Gaussian-models: Vg4, Dy

f(h) = e".
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Connection between the models (convergence in a stronger sense)

Consider the skeleton of a stationary random tessellation 7:

skel(T) := | bdt,

teT

which is a stationary random closed set.
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Connection between the models (convergence in a stronger sense)

Consider the skeleton of a stationary random tessellation 7:
skel(T) := | bdt,
teT

which is a stationary random closed set. Set:

Da.p :=skel(\/28Dap),8>0
Dy 5 = skel(\/2B8 Dy 5)
D = skel(Dy)
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which is a stationary random closed set. Set:

Da.p :=skel(\/28Dap),8>0
Dy 5 = skel(\/2B8 Dy 5)
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Theorem (A.G., Z. Kabluchko and C.Thile, 2022)

Pa,p and 9 5 converge weakly to Dq as B — oo.
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Connection between the models (convergence in a stronger sense)

Consider the skeleton of a stationary random tessellation 7:
skel(T) := | bdt,
teT

which is a stationary random closed set. Set:

Da.p :=skel(\/28Dap),8>0
Dy 5 = skel(\/2B8 Dy 5)
D = skel(Dq)

Theorem (A.G., Z. Kabluchko and C.Thile, 2022)

Pa,p and 9 5 converge weakly to Dq as B — oo.

Work in progress (with M. in Wolde-Liibke): skel(Dg,3) LA skel(Dyg) as 8 — —1.
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Connection between the models (convergence in a stronger sense)

Consider the skeleton of a stationary random tessellation 7:
skel(T) := | bdt,
teT

which is a stationary random closed set. Set:

Da.p :=skel(\/28Dap),8>0
Dy 5 = skel(\/2B8 Dy 5)
D = skel(Dq)

Theorem (A.G., Z. Kabluchko and C.Thile, 2022)

Pa,p and 9 5 converge weakly to Dq as B — oo.

Work in progress (with M. in Wolde-Liibke): skel(Dg,3) LA skel(Dyg) as 8 — —1.

Remark: If it holds we could formally write Dy,—1 := Dg and allow 8 > —1 in S-model.
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Connection between the models (convergence of skeletons)

Classical models: V4, Dy

Homogeneous
PPP in RY, e.g.

f = dop.

B'-models: V; 5, Dy 5

f(h) = cyzh"”,
h>0,
B € (d/2+1,00).

l B—rd/2+1
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B——1

B-models: Vq 3, Da,g

f(h) = cq gh®,
h>0,
/B S (—1,00)

J{ B—00  (when scaled by /23)

B—o0

_—
(when scaled by 1/23)

Gaussian-models: Vg4, Dy

f(h) = e".

Random (Laguerre) tessellations
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Extreme value theory

Question: What makes then -, 5’- and Gaussian models so special?
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Extreme value theory

Question: What makes then 8-, 5’- and Gaussian models so special?

Fisher-Tippett-Gnedenko theorem: Let Xi, Xz, ... be the sequence of i.i.d. random
variables and let M, = maxi<j<n Xj. Suppose there are a, > 0, b, € R, s.t.

lim P((Mn — bn) < anx) = G(x),

n—o0

for some non-degenerate distribution function G. Then G (after proper renormalization)
is one of the following extreme value distributions

> Weibull distribution: W;(t) = exp(—(—t)?), t <0, 8 > 0;

» Fréchet distribution: ®4(t) = exp(—t=?), t >0, 8 > 0;

> Gumbel distribution: A(t) = exp(—e™").
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Extreme value theory

Question: What makes then 8-, 5’- and Gaussian models so special?

Fisher-Tippett-Gnedenko theorem: Let Xi, Xz, ... be the sequence of i.i.d. random
variables and let M, = maxi<ij<n Xj. Suppose there are a, > 0, b, € R, s.t.

lim P((Mn — bn) < anx) = G(x),

n—o0

for some non-degenerate distribution function G. Then G (after proper renormalization)
is one of the following extreme value distributions

> Weibull distribution: Ws(t) = exp(—(—1)?), t <0, 8> 0;

> Fréchet distribution: ®3(t) = exp(—t#), t >0, 3> 0;

> Gumbel distribution: A(t) = exp(—e™").

Question: What are the high-dimensional settings?
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Extreme value theory

Question: What makes then 8-, 5’- and Gaussian models so special?

Question: What are the high-dimensional settings?

Let X1, Xo, ... be i.i.d. random points in RY, whose distribution is rotationally invariant.
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Question: What makes then 8-, 5’- and Gaussian models so special?

Question: What are the high-dimensional settings?

Let X1, Xo, ... be i.i.d. random points in RY, whose distribution is rotationally invariant.
Natural high-dimensional analogue of maximum is the convex hull conv(Xi, ..., X»).
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Extreme value theory

Question: What makes then 8-, 5’- and Gaussian models so special?

Question: What are the high-dimensional settings?

Let X1, Xo, ... be i.i.d. random points in RY, whose distribution is rotationally invariant.
Natural high-dimensional analogue of maximum is the convex hull conv(Xi, ..., X»).

Next question: What do we see when n — o0?
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Question: What makes then 8-, 5’- and Gaussian models so special?

Question: What are the high-dimensional settings?

Let X1, Xo, ... be i.i.d. random points in RY, whose distribution is rotationally invariant.
Natural high-dimensional analogue of maximum is the convex hull conv(Xi, ..., X»).

Next question: What do we see when n — oo? After "projection” and proper rescaling
boundary of convex hull is expected to converge to a tessellation.
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Extreme value theory

Question: What makes then 8-, 5’- and Gaussian models so special?

Question: What are the high-dimensional settings?

Let X1, Xo, ... be i.i.d. random points in RY, whose distribution is rotationally invariant.
Natural high-dimensional analogue of maximum is the convex hull conv(Xi,..., X,).

Next question: What do we see when n — oo? After "projection” and proper rescaling

boundary of convex hull is expected to converge to a tessellation.

Which kind of tessellation?
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Extreme value theory

Question: What makes then 8-, 5’- and Gaussian models so special?

Question: What are the high-dimensional settings?

Let X1, Xo, ... be i.i.d. random points in RY, whose distribution is rotationally invariant.
Natural high-dimensional analogue of maximum is the convex hull conv(Xi,..., X,).

Next question: What do we see when n — oo? After "projection” and proper rescaling
boundary of convex hull is expected to converge to a tessellation.

Which kind of tessellation?

Extreme value theory distributions Tessellation (L(f))*
(CDF is of the form F(t) = exp(—g(t)))

Weibull: g(t) = (—t)?, t <0 B-Delaunay: f(h)=h?, h>0
Fréchet: g(t)=t%,t>0 ('-Delaunay: f(h) = (—h)"?, h<0
Gumbel: g(t) = e * Gaussian-Delaunay: f(h) = e”
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Central limit theorem for the number of faces of Dy 3 and 1501

> Given a stationary face-to-face random tessellation 7 denote by X7« the stationary
point process of k-dimensional faces of T, e.g.

T(k) = Z (SC(F), OSde_]w
FeF(T)

where ¢(P) is lexicographically smallest vertex of polytope P.
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Central limit theorem for the number of faces of Dy 3 and 1501

> Given a stationary face-to-face random tessellation 7 denote by X7« the stationary

point process of k-dimensional faces of T, e.g.

T(k) = Z (SC(F), OSde_]w
FeF(T)

where ¢(P) is lexicographically smallest vertex of polytope P.
> Let /, :=[—n, n]? and denote T = T®(1,). Note ETH = w(T)(2n)°.
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Central limit theorem for the number of faces of Dy 3 and st

> Given a stationary face-to-face random tessellation 7 denote by X7 i the stationary
point process of k-dimensional faces of T, e.g.

Z dcry, 0<k<d—1,
FEFH(T)

where ¢(P) is lexicographically smallest vertex of polytope P.
> Let /, :=[—n, n]? and denote T = T®(1,). Note ETH = w(T)(2n)°.

Theorem (A.G., Z. Kabluchko and C.Thale, 2022)

Let T be one of the tessellations Dy g for § > —1 or Dy, then the limit
2 = limy 00 (2n) " [var T¥] > 0 exists and

72" — y(T)(2n)?
(2n)%

GNN(O sz) as n — .
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Central limit theorem for the number of faces of Dy 3 and st

> Given a stationary face-to-face random tessellation 7 denote by X7 i the stationary
point process of k-dimensional faces of T, e.g.

Z dcry, 0<k<d—1,
FEFH(T)

where ¢(P) is lexicographically smallest vertex of polytope P.
> Let /, :=[—n, n]? and denote T = T®(1,). Note ETH = w(T)(2n)°.

Theorem (A.G., Z. Kabluchko and C.Thale, 2022)

Let T be one of the tessellations Dy g for § > —1 or Dy, then the limit
2 = limy 00 (2n) " [var T¥] > 0 exists and

72" — y(T)(2n)?
(2n)%

GNN(O sz) as n — .

Values vk(Da,5) and 7x(Dy) can be written down explicitly.
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Central limit theorem for the number of faces of Dy 3 and st

> Given a stationary face-to-face random tessellation 7 denote by X7 i the stationary
point process of k-dimensional faces of T, e.g.

Z dcry, 0<k<d—1,
FEFH(T)

where ¢(P) is lexicographically smallest vertex of polytope P.
> Let /, :=[—n, n]? and denote T = T®(1,). Note ETH = w(T)(2n)°.

Theorem (A.G., Z. Kabluchko and C.Thale, 2022)

Let T be one of the tessellations Dy g for § > —1 or Dy, then the limit
2 = limy 00 (2n) " [var T¥] > 0 exists and

72" — y(T)(2n)?
(2n)%

GNN(O sz) as n — .

Values vk(Da,5) and 7x(Dy) can be written down explicitly.
Open question: Is there CLT for Dy 5 (especially when 8 ~ d/2+ 1)?
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Thank you for attention!
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