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Basic definitions: Tessellations

▶ A tessellation T in Rd is a system of convex
polytopes (cells), covering the space and having
disjoint interiors.

▶ T is face-to-face if for any t1, t2 ∈ T we have, that
t1 ∩ t2 is empty or is a face of t1 and t2.

▶ Fk(t) - set of all k-dimensional faces of a polytope t,

Fk(T ) =
⋃
t∈T

Fk(t), 0 ≤ k ≤ d .

▶ T is called normal if any F ∈ Fk(T ) is contained in exactly d − k + 1 cells.

▶ T is called simplicial if all its cells are simplices.

How to construct a (random) tessellation?

Construction is based on a given (random) set of points: Voronoi tessellation, Delaunay
tessellation, Laguerre tessellation.
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Poisson-Voronoi tessellation: construction

Let η be a PPP in Rd with intensity measure γ Lebd , γ > 0.

Voronoi cell of (nuclei) v ∈ η: V (v , η) := {z ∈ Rd : ∥z − v∥2 ≤ ∥z − v ′∥2 for all v ′ ∈ η}.

Poisson-Voronoi tessellation (of intensity γ): Vd := {V (v , η) : v ∈ η}.

Fact: Vd is almost surely face-to-face, normal random tessellation and Vd is stationary.
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1950’s - current: Baumstark, Blaszczyszyn, Calka, Hug, Kendall, Last, Møller, Mecke,
Miles, Muche, Reitzner, Schneider, Stoyan, Zhang and many others.
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Poisson-Delaunay tessellation (definition via duality)

duality−−−→

Poisson-Delaunay tessellation Dd is dual model of Poisson-Voronoi tessellation Vd .
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Poisson-Voronoi tessellation: graphical interpretation

Voronoi cell of (nuclei) v ∈ η:

V (v , η) := {z ∈ Rd : ∥z − v∥2 ≤ ∥z − v ′∥2 for all v ′ ∈ η}.

time,h

V

0.

space,v
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Poisson-Voronoi tessellation: graphical interpretation

Generalized Voronoi (Laguerre) cell of (v , h) ∈ ξ:

V ((v , h), ξ) := {z ∈ Rd : ∥z − v∥2 + h ≤ ∥z − v ′∥2 + h′ for all (v ′, h′) ∈ ξ}.

time,h

-...........

iv space,v
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Motivation: sectional properties of Poisson-Voronoi tessellation

Given a ℓ-dimensional affine subspace Lℓ ⊂ Rd define the sectional tessellation

T ∩ Lℓ := {t ∩ Lℓ : t ∈ T }.

Question: Is sectional Poisson-Voronoi tessellation Vd ∩ Lℓ a Voronoi tessellation?

3D Poisson-Voronoi tessellation 2D Poisson-Voronoi tessellation

Answer: ”The sectional Poisson-Voronoi tessellation is not a Voronoi tessellation” (Chiu,
Van De Weygaert, Stoyan’96). It is a Laguerre tessellation! But which one?
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Generalized Voronoi tessellation (Laguerre tessellation)

Let ξf be a PPP in Rd × E where E is R, R≥0 or R<0 with intensity measure

µ(B × A) =

∫
Rd

∫
E

1{v ∈ B}1{h ∈ A}f (h)dvdh.

Laguerre cell of (v , h) ∈ ξf :

V ((v , h), ξf ) := {z ∈ Rd : ∥z − v∥2 + h ≤ ∥z − v ′∥2 + h′ for all (v ′, h′) ∈ ξf }.

Laguerre tessellation: Ld(f ) := {V ((v , h), ξf ) : (v , h) ∈ ξf , intV ((v , h), ξf ) ̸= ∅}.
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loc(E) be such that (I
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+1f )(t) <∞ for all t ∈ E

and in case of E = R<0 we
additionally assume that there is ε > 0 such that for sufficiently big n ∈ N we have
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+1f )(−1/n) ≥ nε.Then
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▶ (Ld(f ))
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Examples

▶ If f ∈ L1(R), then ξf is an independent marking of a homogeneous PPP on Rd

(Lautensack, Zuyev’08).

▶
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Examples

▶ Gaussian model: take f (h) := eh

Ṽd := Ld(f ) is called Gaussian-Voronoi tessellation;

D̃d := (Ld(f ))
∗ is called Gaussian-Delaunay tessellation.
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Examples

▶ β-model: f (h) := cd,β hβ1h≥0, β > −1

Vd,β = Ld(f ) is called β-Voronoi tessellation;
Dd,β = (Ld(f ))

∗ is called β-Delaunay tessellation.
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Examples

▶ β′-model: f (h) = c ′d,β (−h)−β1h<0, β > βc(d) := (d + 2)/2

V ′
d,β := Ld(f ) is called β′-Voronoi tessellation;
D′

d,β := (Ld(f ))
∗ is called β′-Delaunay tessellation.
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Sectional properties

Question: Is sectional Poisson-Voronoi tessellation Vd ∩ Lℓ a Voronoi tessellation?

Answer: ”The sectional Poisson-Voronoi tessellation is not a Voronoi tessellation” (Chiu,
Van De Weygaert, Stoyan’96).

It is β-Voronoi tessellation!

Theorem (A.G., Z. Kabluchko and C. Thäle, 2024)

For any ℓ-dimensional affine subspace Lℓ we have

Vd ∩ Lℓ
d
= Vℓ,−1+(d−ℓ)/2 (up to isometry)

(here intensity of Vd is chosen to be γ = π
d+1
2 /Γ( d+1

2
))

More generally:

Theorem (A.G. and M. in Wolde-Lübke, 2024+)

For any ℓ-dimensional affine subspace Lℓ we have

Ld(f ) ∩ Lℓ
d
= Lℓ

(
π

d−ℓ
2 (I

d−ℓ
2 f )

)
(up to isometry)

As a corollary:

Vd,β ∩ Lℓ
d
= Vℓ,β+(d−ℓ)/2 V ′

d,β ∩ Lℓ
d
= V ′

ℓ,β−(d−ℓ)/2 Ṽd ∩ Lℓ
d
= Ṽℓ

Anna Gusakova Random (Laguerre) tessellations 9 / 18



Sectional properties

Question: Is sectional Poisson-Voronoi tessellation Vd ∩ Lℓ a Voronoi tessellation?

Answer: ”The sectional Poisson-Voronoi tessellation is not a Voronoi tessellation” (Chiu,
Van De Weygaert, Stoyan’96). It is β-Voronoi tessellation!

Theorem (A.G., Z. Kabluchko and C. Thäle, 2024)
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For any ℓ-dimensional affine subspace Lℓ we have

Ld(f ) ∩ Lℓ
d
= Lℓ

(
π

d−ℓ
2 (I

d−ℓ
2 f )

)
(up to isometry)

As a corollary:

Vd,β ∩ Lℓ
d
= Vℓ,β+(d−ℓ)/2 V ′

d,β ∩ Lℓ
d
= V ′

ℓ,β−(d−ℓ)/2 Ṽd ∩ Lℓ
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Characteristics of stationary random tessellation

▶ T is a stationary random tessellation.

▶ k-cell intensity of T :

γk(T ) = E
∑

F∈Fk (T )

1{z(F , T ) ∈ [0, 1]d},

where z : {polytopes} × {tessellations} 7→ Rd be s.t.
z(t + x , T + x) = z(t, T ) + x for all x ∈ Rd .

▶ Typical cell of T : Z(T ) is a random polytope with distribution

Ptyp
T (·) = 1

γd(T )
E

∑
t∈T : z(t,T )∈[0,1]d

1{t − z(t, T ) ∈ ·}.

For Ld (ξ) we choose v as a center of a cell V ((v , h), ξ) and for (Ld (ξ))
∗ as a center we

choose a corresponding vertex of Ld (ξ).
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Stochastic representation of the typical cell

Let T be one of the following tessellations Dd , Dd,β , D′
d,β , D̃d .

Theorem (A.G., Z. Kabluchko and C.Thäle, 2022)

We have Z(T ) d
= R · conv(Y1, . . . ,Yd+1) := conv(RY1, . . . ,RYd+1);

(a) (Y1, . . . ,Yd+1) are random points, whose joint distribution is

const · Vol(conv(y1, . . . , yd+1))
d+1∏
i=1

F (dyi );

(b) R is a random variable on (0,∞) with distribution G;

(c) R is independent of (Y1, . . . ,Yd+1),

where

F = Unif(Sd−1), G(dr) = rd
2−1e−c·rddr , T = Dd ;
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F (dx) = (2π)−d/2e−∥x∥2/2dx , G = δ1, T = D̃d .
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Stochastic representation of the typical cell

Let T be one of the following tessellations Dd , Dd,β , D′
d,β , D̃d .

Theorem (A.G., Z. Kabluchko and C.Thäle, 2022)

We have Z(T ) d
= R · conv(Y1, . . . ,Yd+1) := conv(RY1, . . . ,RYd+1);

(a) (Y1, . . . ,Yd+1) are random points, whose joint distribution is

const · Vol(conv(y1, . . . , yd+1))
d+1∏
i=1

F (dyi );

(b) R is a random variable on (0,∞) with distribution G;

(c) R is independent of (Y1, . . . ,Yd+1),

where

F = Unif(Sd−1), G(dr) = rd
2−1e−c·rddr , T = Dd ;

Remark

Case of Poisson-Delaunay tessellation T = Dd is well-know (Miles’74, Møller’94).
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New formulas for the classical Poisson-Voronoi tessellation

Combining combinatorial relations between different characteristics of stationary random
tessellation and properties of β-random simplices we also get:

Theorem (A.G., Z. Kabluchko and C. Thäle, 2024)

For any 0 ≤ j ≤ d we have

EVj(Z(Vd)) =
(

γ

Γ( d
2
+1)

)− j
d (d−j+1)(d−1)+1√

πd(d−j)!

Γ(d−j+ j
d
)

Γ( j+1
2

)

×
∫ ∞

−∞
(cosh u)−(d−j+1)(d−1)−2

[√πΓ( d
2
+ 1)

Γ( d+1
2
)

+ d i

∫ u

0

(cosh v)d−1dv
]d−j

du.

Vj is j-th intrinsic volume, in particular Vd is the volume and 1
2
Vd−1 is the surface area.
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Connection between the models

(convergence of typical cells)

Classical models: Vd , Dd

Homogeneous
PPP in Rd , e.g.

f = δ0.

β→−1←−−−−−−−−−−−

β-models: Vd,β , Dd,β

f (h) = cd,βh
β ,

h ≥ 0,

β ∈ (−1,∞).

y β→∞ (when scaled by
√

2β)

β′-models: V ′
d,β , D′

d,β

f (h) = c ′d,βh
−β ,

h > 0,

β ∈ (d/2+1,∞).

β→∞−−−−−−−−−−−→
(when scaled by

√
2β)

Gaussian-models: Ṽd , D̃d

f (h) = eh.
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Connection between the models (convergence in a stronger sense)

Consider the skeleton of a stationary random tessellation T :

skel(T ) :=
⋃
t∈T

bd t,

which is a stationary random closed set.

Set:

Dd,β := skel(
√

2βDd,β), β > 0

D ′
d,β := skel(

√
2βD′

d,β)

D̃d := skel(D̃d)

Theorem (A.G., Z. Kabluchko and C.Thäle, 2022)

Dd,β and D ′
d,β converge weakly to D̃d as β →∞.

Work in progress (with M. in Wolde-Lübke): skel(Dd,β)
d→ skel(Dd) as β → −1.

Remark: If it holds we could formally write Dd,−1 := Dd and allow β ≥ −1 in β-model.
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Connection between the models (convergence of skeletons)

Classical models: Vd , Dd

Homogeneous
PPP in Rd , e.g.

f = δ0. β→−1←−−−−−−−−−−−

β-models: Vd,β , Dd,β

f (h) = cd,βh
β ,

h ≥ 0,

β ∈ (−1,∞).

y β→∞ (when scaled by
√
2β)

β′-models: V ′
d,β , D′

d,β

f (h) = c ′d,βh
−β ,

h > 0,

β ∈ (d/2+1,∞).

β→∞−−−−−−−−−−−→
(when scaled by

√
2β)

Gaussian-models: Ṽd , D̃d

f (h) = eh.

y β→d/2+1

Anna Gusakova Random (Laguerre) tessellations 15 / 18



Extreme value theory

Question: What makes then β-, β′- and Gaussian models so special?

Let X1,X2, . . . be i.i.d. random points in Rd , whose distribution is rotationally invariant.
Natural high-dimensional analogue of maximum is the convex hull conv(X1, . . . ,Xn).

Next question: What do we see when n→∞? After ”projection” and proper rescaling
boundary of convex hull is expected to converge to a tessellation.
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Let X1,X2, . . . be i.i.d. random points in Rd , whose distribution is rotationally invariant.
Natural high-dimensional analogue of maximum is the convex hull conv(X1, . . . ,Xn).

Next question: What do we see when n→∞? After ”projection” and proper rescaling
boundary of convex hull is expected to converge to a tessellation.

Which kind of tessellation?

Extreme value theory distributions Tessellation (L(f ))∗
(CDF is of the form F (t) = exp(−g(t)))

Weibull: g(t) = (−t)β , t ≤ 0 β-Delaunay: f (h) = hβ , h ≥ 0
Fréchet: g(t) = t−β , t > 0 β′-Delaunay: f (h) = (−h)−β , h < 0

Gumbel: g(t) = e−t Gaussian-Delaunay: f (h) = eh
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Central limit theorem for the number of faces of Dd ,β and D̃d

▶ Given a stationary face-to-face random tessellation T denote by XT ,k the stationary
point process of k-dimensional faces of T , e.g.

T (k) :=
∑

F∈Fk (T )

δc(F ), 0 ≤ k ≤ d − 1,

where c(P) is lexicographically smallest vertex of polytope P.

▶ Let In := [−n, n]d and denote T (k)
n := T (k)(In). Note ET (k)

n = γk(T )(2n)d .

Theorem (A.G., Z. Kabluchko and C.Thäle, 2022)

Let T be one of the tessellations Dd,β for β > −1 or D̃d , then the limit

s2k := limn→∞(2n)−d [var T (k)
n ] > 0 exists and

T (k)
n − γk(T )(2n)d

(2n)
d
2

d−→ G ∼ N (0, s2k ) as n→∞.

Values γk(Dd,β) and γk(D̃d) can be written down explicitly.

Open question: Is there CLT for D′
d,β (especially when β ≈ d/2 + 1)?
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Thank you for attention!
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