Random (Laguerre) tessellations

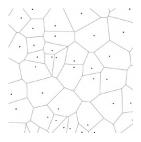
Anna Gusakova - Münster University (joint work with Zakhar Kabluchko, Christoph Thäle, Mathias in Wolde-Lübke)

GrHyDy2024: Random spatial models, Lille, France October 23, 2024 A tessellation T in ℝ^d is a system of convex polytopes (cells), covering the space and having disjoint interiors.



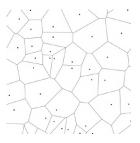
- A tessellation T in R^d is a system of convex polytopes (cells), covering the space and having disjoint interiors.
- ▶ *T* is face-to-face if for any $t_1, t_2 \in T$ we have, that $t_1 \cap t_2$ is empty or is a face of t_1 and t_2 .

- A tessellation T in R^d is a system of convex polytopes (cells), covering the space and having disjoint interiors.
- ▶ *T* is face-to-face if for any $t_1, t_2 \in T$ we have, that $t_1 \cap t_2$ is empty or is a face of t_1 and t_2 .



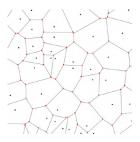
- A tessellation T in R^d is a system of convex polytopes (cells), covering the space and having disjoint interiors.
- ▶ *T* is face-to-face if for any $t_1, t_2 \in T$ we have, that $t_1 \cap t_2$ is empty or is a face of t_1 and t_2 .
- $\mathcal{F}_k(t)$ set of all k-dimensional faces of a polytope t,

$$\mathcal{F}_k(T) = \bigcup_{t \in T} \mathcal{F}_k(t), 0 \leq k \leq d.$$



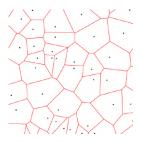
- A tessellation T in R^d is a system of convex polytopes (cells), covering the space and having disjoint interiors.
- ▶ *T* is face-to-face if for any $t_1, t_2 \in T$ we have, that $t_1 \cap t_2$ is empty or is a face of t_1 and t_2 .
- $\mathcal{F}_k(t)$ set of all k-dimensional faces of a polytope t,

$$\mathcal{F}_k(\mathcal{T}) = \bigcup_{t\in\mathcal{T}} \mathcal{F}_k(t), 0 \leq k \leq d.$$



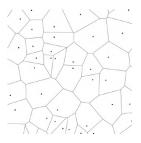
- A tessellation T in R^d is a system of convex polytopes (cells), covering the space and having disjoint interiors.
- ▶ *T* is face-to-face if for any $t_1, t_2 \in T$ we have, that $t_1 \cap t_2$ is empty or is a face of t_1 and t_2 .
- $\mathcal{F}_k(t)$ set of all k-dimensional faces of a polytope t,

$$\mathcal{F}_k(\mathcal{T}) = \bigcup_{t\in\mathcal{T}} \mathcal{F}_k(t), 0 \leq k \leq d.$$



- A tessellation T in R^d is a system of convex polytopes (cells), covering the space and having disjoint interiors.
- ▶ *T* is face-to-face if for any $t_1, t_2 \in T$ we have, that $t_1 \cap t_2$ is empty or is a face of t_1 and t_2 .
- $\mathcal{F}_k(t)$ set of all k-dimensional faces of a polytope t,

$$\mathcal{F}_k(\mathcal{T}) = \bigcup_{t\in\mathcal{T}} \mathcal{F}_k(t), 0 \leq k \leq d.$$



▶ T is called normal if any $F \in \mathcal{F}_k(T)$ is contained in exactly d - k + 1 cells.

- A tessellation T in R^d is a system of convex polytopes (cells), covering the space and having disjoint interiors.
- ▶ *T* is face-to-face if for any $t_1, t_2 \in T$ we have, that $t_1 \cap t_2$ is empty or is a face of t_1 and t_2 .
- $\mathcal{F}_k(t)$ set of all k-dimensional faces of a polytope t,

$$\mathcal{F}_k(T) = \bigcup_{t \in T} \mathcal{F}_k(t), 0 \leq k \leq d.$$

- ▶ T is called normal if any $F \in \mathcal{F}_k(T)$ is contained in exactly d k + 1 cells.
- T is called simplicial if all its cells are simplices.

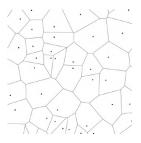
- A tessellation T in R^d is a system of convex polytopes (cells), covering the space and having disjoint interiors.
- ▶ *T* is face-to-face if for any $t_1, t_2 \in T$ we have, that $t_1 \cap t_2$ is empty or is a face of t_1 and t_2 .
- $\mathcal{F}_k(t)$ set of all k-dimensional faces of a polytope t,

$$\mathcal{F}_k(T) = \bigcup_{t \in T} \mathcal{F}_k(t), 0 \leq k \leq d.$$

- ▶ T is called normal if any $F \in \mathcal{F}_k(T)$ is contained in exactly d k + 1 cells.
- T is called simplicial if all its cells are simplices.

- A tessellation T in R^d is a system of convex polytopes (cells), covering the space and having disjoint interiors.
- ▶ *T* is face-to-face if for any $t_1, t_2 \in T$ we have, that $t_1 \cap t_2$ is empty or is a face of t_1 and t_2 .
- $\mathcal{F}_k(t)$ set of all k-dimensional faces of a polytope t,

$$\mathcal{F}_k(T) = \bigcup_{t \in T} \mathcal{F}_k(t), 0 \leq k \leq d.$$



- ▶ T is called normal if any $F \in \mathcal{F}_k(T)$ is contained in exactly d k + 1 cells.
- T is called simplicial if all its cells are simplices.

Construction is based on a given (random) set of points: Voronoi tessellation, Delaunay tessellation, Laguerre tessellation.

- A tessellation T in R^d is a system of convex polytopes (cells), covering the space and having disjoint interiors.
- ▶ *T* is face-to-face if for any $t_1, t_2 \in T$ we have, that $t_1 \cap t_2$ is empty or is a face of t_1 and t_2 .
- $\mathcal{F}_k(t)$ set of all k-dimensional faces of a polytope t,

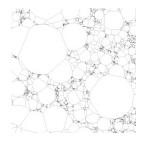
$$\mathcal{F}_k(T) = \bigcup_{t \in T} \mathcal{F}_k(t), 0 \leq k \leq d.$$

- ▶ T is called normal if any $F \in \mathcal{F}_k(T)$ is contained in exactly d k + 1 cells.
- T is called simplicial if all its cells are simplices.

Construction is based on a given (random) set of points: Voronoi tessellation, Delaunay tessellation, Laguerre tessellation.

- A tessellation T in R^d is a system of convex polytopes (cells), covering the space and having disjoint interiors.
- ▶ *T* is face-to-face if for any $t_1, t_2 \in T$ we have, that $t_1 \cap t_2$ is empty or is a face of t_1 and t_2 .
- $\mathcal{F}_k(t)$ set of all k-dimensional faces of a polytope t,

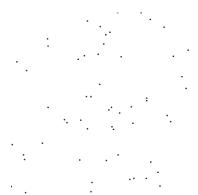
$$\mathcal{F}_k(T) = \bigcup_{t \in T} \mathcal{F}_k(t), 0 \leq k \leq d.$$



- ▶ T is called normal if any $F \in \mathcal{F}_k(T)$ is contained in exactly d k + 1 cells.
- T is called simplicial if all its cells are simplices.

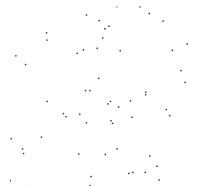
Construction is based on a given (random) set of points: Voronoi tessellation, Delaunay tessellation, Laguerre tessellation.

Let η be a PPP in \mathbb{R}^d with intensity measure $\gamma \operatorname{Leb}_d$, $\gamma > 0$.



Let η be a PPP in \mathbb{R}^d with intensity measure $\gamma \operatorname{Leb}_d$, $\gamma > 0$.

Voronoi cell of (nuclei) $v \in \eta$: $V(v, \eta) := \{z \in \mathbb{R}^d : \|z - v\|^2 \le \|z - v'\|^2 \text{ for all } v' \in \eta\}.$



Let η be a PPP in \mathbb{R}^d with intensity measure $\gamma \operatorname{Leb}_d$, $\gamma > 0$.

Voronoi cell of (nuclei) $v \in \eta$: $V(v, \eta) := \{z \in \mathbb{R}^d : \|z - v\|^2 \le \|z - v'\|^2 \text{ for all } v' \in \eta\}.$

Let η be a PPP in \mathbb{R}^d with intensity measure $\gamma \operatorname{Leb}_d$, $\gamma > 0$. Voronoi cell of (nuclei) $v \in \eta$: $V(v, \eta) := \{z \in \mathbb{R}^d : ||z - v||^2 \le ||z - v'||^2 \text{ for all } v' \in \eta\}$. Poisson-Voronoi tessellation (of intensity γ): $\mathcal{V}_d := \{V(v, \eta) : v \in \eta\}$.

Let η be a PPP in \mathbb{R}^d with intensity measure $\gamma \operatorname{Leb}_d$, $\gamma > 0$.

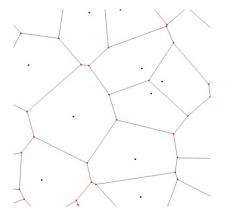
Voronoi cell of (nuclei) $v \in \eta$: $V(v, \eta) := \{z \in \mathbb{R}^d : \|z - v\|^2 \le \|z - v'\|^2 \text{ for all } v' \in \eta\}.$

Poisson-Voronoi tessellation (of intensity γ): $\mathcal{V}_d := \{V(v, \eta) : v \in \eta\}.$

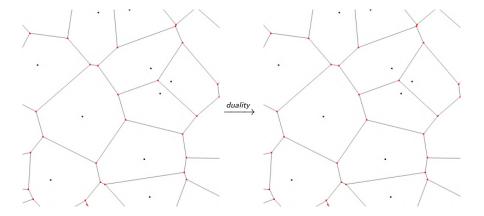
Fact: V_d is almost surely face-to-face, normal random tessellation and V_d is stationary.

Let η be a PPP in \mathbb{R}^d with intensity measure $\gamma \operatorname{Leb}_d$, $\gamma > 0$. Voronoi cell of (nuclei) $v \in \eta$: $V(v, \eta) := \{z \in \mathbb{R}^d : ||z - v||^2 \le ||z - v'||^2$ for all $v' \in \eta\}$. Poisson-Voronoi tessellation (of intensity γ): $\mathcal{V}_d := \{V(v, \eta) : v \in \eta\}$. Fact: \mathcal{V}_d is almost surely face-to-face, normal random tessellation and \mathcal{V}_d is stationary.

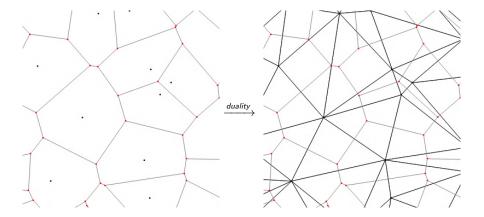
1950's - current: Baumstark, Blaszczyszyn, Calka, Hug, Kendall, Last, Møller, Mecke, Miles, Muche, Reitzner, Schneider, Stoyan, Zhang and many others.



Poisson-Delaunay tessellation \mathcal{D}_d is dual model of Poisson-Voronoi tessellation \mathcal{V}_d .

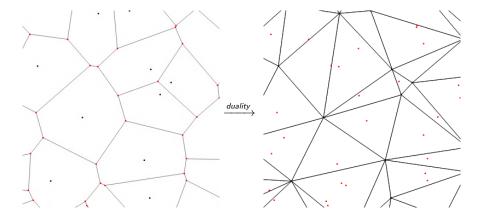


Poisson-Delaunay tessellation \mathcal{D}_d is dual model of Poisson-Voronoi tessellation \mathcal{V}_d .



Poisson-Delaunay tessellation \mathcal{D}_d is dual model of Poisson-Voronoi tessellation \mathcal{V}_d .

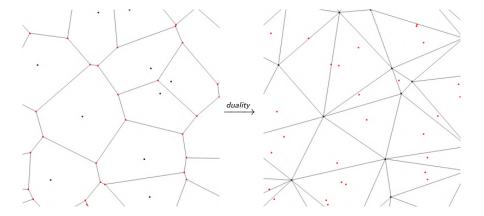
▶ for each $e \in \mathcal{F}_0(\mathcal{V}_d)$ define $D(e, \eta) := \operatorname{conv}\{v \in \eta : e \text{ is a vertex of } V(v, \eta)\}$,



Poisson-Delaunay tessellation \mathcal{D}_d is dual model of Poisson-Voronoi tessellation \mathcal{V}_d .

▶ for each $e \in \mathcal{F}_0(\mathcal{V}_d)$ define $D(e, \eta) := \operatorname{conv}\{v \in \eta : e \text{ is a vertex of } V(v, \eta)\}$,

$$\blacktriangleright \mathcal{D}_d = \{ D(e,\eta), e \in \mathcal{F}_0(\mathcal{V}_d) \} = (\mathcal{V}_d)^*.$$



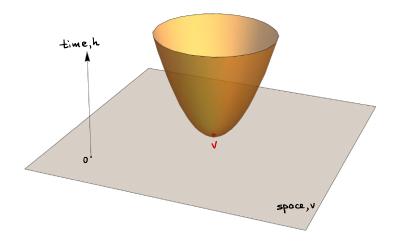
Poisson-Delaunay tessellation \mathcal{D}_d is dual model of Poisson-Voronoi tessellation \mathcal{V}_d .

▶ for each $e \in \mathcal{F}_0(\mathcal{V}_d)$ define $D(e, \eta) := \operatorname{conv}\{v \in \eta : e \text{ is a vertex of } V(v, \eta)\}$,

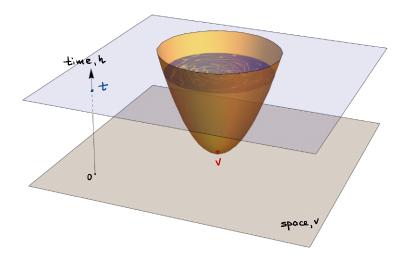
$$\blacktriangleright \mathcal{D}_d = \{ D(e,\eta), e \in \mathcal{F}_0(\mathcal{V}_d) \} = (\mathcal{V}_d)^*.$$

Voronoi cell of (nuclei)
$$v \in \eta$$
:

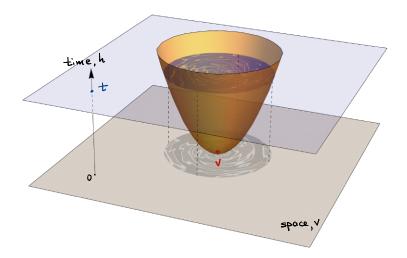
$$V(v, \eta) := \{ z \in \mathbb{R}^d : ||z - v||^2 \le ||z - v'||^2 \text{ for all } v' \in \eta \}.$$



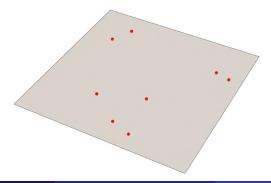
Voronoi cell of (nuclei) $v \in \eta$: $V(v, \eta) := \{ z \in \mathbb{R}^d : ||z - v||^2 \le ||z - v'||^2 \text{ for all } v' \in \eta \}.$



Voronoi cell of (nuclei) $v \in \eta$: $V(v, \eta) := \{ z \in \mathbb{R}^d : ||z - v||^2 \le ||z - v'||^2 \text{ for all } v' \in \eta \}.$



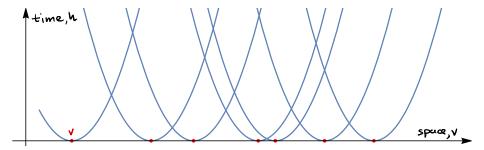
Voronoi cell of (nuclei) $v \in \eta$: $V(v, \eta) := \{ z \in \mathbb{R}^d : \|z - v\|^2 \le \|z - v'\|^2 \text{ for all } v' \in \eta \}.$



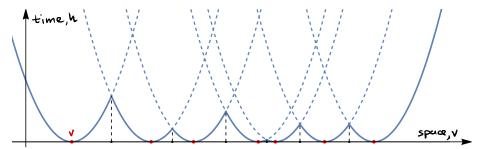
Voronoi cell of (nuclei) $v \in \eta$: $V(v,\eta) := \{ z \in \mathbb{R}^d : \|z - v\|^2 \le \|z - v'\|^2 \text{ for all } v' \in \eta \}.$

Voronoi cell of (nuclei) $v \in \eta$: $V(v,\eta) := \{ z \in \mathbb{R}^d : \|z - v\|^2 \le \|z - v'\|^2 \text{ for all } v' \in \eta \}.$

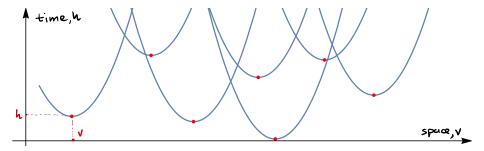
$$V(v,\eta) := \{z \in \mathbb{R}^d \colon \|z-v\|^2 \le \|z-v'\|^2 ext{ for all } v' \in \eta\}.$$



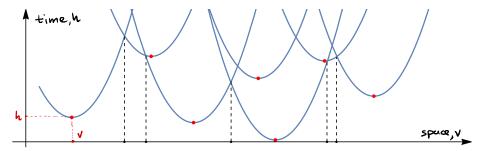
$$V(v,\eta) := \{z \in \mathbb{R}^d \colon \|z-v\|^2 \le \|z-v'\|^2 ext{ for all } v' \in \eta\}.$$



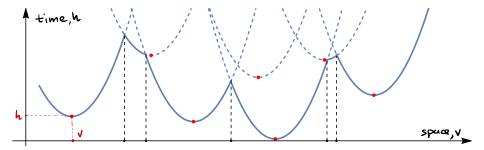
$$V(v,\eta) := \{z \in \mathbb{R}^d \colon \|z - v\|^2 \leq \|z - v'\|^2 ext{ for all } v' \in \eta\}.$$



$$V(v,\eta) := \{z \in \mathbb{R}^d \colon \|z - v\|^2 \leq \|z - v'\|^2 ext{ for all } v' \in \eta\}.$$

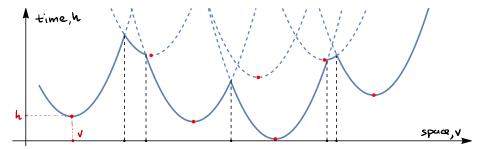


$$V(v,\eta) := \{z \in \mathbb{R}^d \colon \|z-v\|^2 \le \|z-v'\|^2 ext{ for all } v' \in \eta\}.$$



Generalized Voronoi (Laguerre) cell of $(v, h) \in \xi$:

$$V((v,h),\xi) := \{z \in \mathbb{R}^d \colon \|z - v\|^2 + h \le \|z - v'\|^2 + h' \text{ for all } (v',h') \in \xi\}.$$



Given a $\ell\text{-dimensional}$ affine subspace $L_\ell\subset \mathbb{R}^d$ define the sectional tessellation

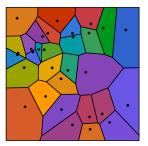
 $\mathcal{T} \cap L_{\ell} := \{t \cap L_{\ell} \colon t \in \mathcal{T}\}.$

Given a ℓ -dimensional affine subspace $L_\ell \subset \mathbb{R}^d$ define the sectional tessellation

$$\mathcal{T} \cap L_{\ell} := \{t \cap L_{\ell} \colon t \in \mathcal{T}\}.$$

Question: Is sectional Poisson-Voronoi tessellation $\mathcal{V}_d \cap L_\ell$ a Voronoi tessellation?

3D Poisson-Voronoi tessellation



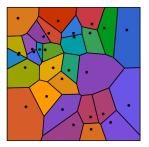
2D Poisson-Voronoi tessellation

Given a ℓ -dimensional affine subspace $L_\ell \subset \mathbb{R}^d$ define the sectional tessellation

$$\mathcal{T} \cap L_{\ell} := \{ t \cap L_{\ell} \colon t \in \mathcal{T} \}.$$

Question: Is sectional Poisson-Voronoi tessellation $\mathcal{V}_d \cap L_\ell$ a Voronoi tessellation?

3D Poisson-Voronoi tessellation



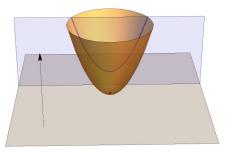
2D Poisson-Voronoi tessellation

Answer: "The sectional Poisson-Voronoi tessellation is not a Voronoi tessellation" (Chiu, Van De Weygaert, Stoyan'96).

Given a ℓ -dimensional affine subspace $L_\ell \subset \mathbb{R}^d$ define the sectional tessellation

$$\mathcal{T} \cap L_{\ell} := \{ t \cap L_{\ell} \colon t \in \mathcal{T} \}.$$

Question: Is sectional Poisson-Voronoi tessellation $\mathcal{V}_d \cap L_\ell$ a Voronoi tessellation?

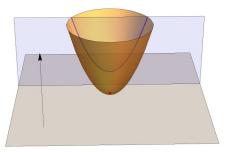


Answer: "The sectional Poisson-Voronoi tessellation is not a Voronoi tessellation" (Chiu, Van De Weygaert, Stoyan'96). It is a Laguerre tessellation!

Given a ℓ -dimensional affine subspace $L_\ell \subset \mathbb{R}^d$ define the sectional tessellation

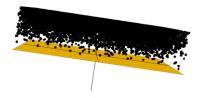
$$\mathcal{T} \cap L_{\ell} := \{ t \cap L_{\ell} \colon t \in \mathcal{T} \}.$$

Question: Is sectional Poisson-Voronoi tessellation $\mathcal{V}_d \cap L_\ell$ a Voronoi tessellation?



Answer: "The sectional Poisson-Voronoi tessellation is not a Voronoi tessellation" (Chiu, Van De Weygaert, Stoyan'96). It is a Laguerre tessellation! But which one?

Let ξ_f be a PPP in $\mathbb{R}^d \times E$ where E is \mathbb{R} , $\mathbb{R}_{\geq 0}$ or $\mathbb{R}_{<0}$ with intensity measure $\mu(B \times A) = \int_{\mathbb{R}^d} \int_E \mathbf{1}\{v \in B\} \mathbf{1}\{h \in A\} f(h) dv dh.$



Let ξ_f be a PPP in $\mathbb{R}^d \times E$ where E is \mathbb{R} , $\mathbb{R}_{\geq 0}$ or $\mathbb{R}_{<0}$ with intensity measure

$$\mu(B \times A) = \int_{\mathbb{R}^d} \int_E \mathbf{1}\{v \in B\} \mathbf{1}\{h \in A\} f(h) dv dh.$$

Laguerre cell of $(v, h) \in \xi_f$:

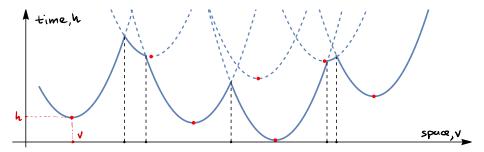
$$V((v,h),\xi_f) := \{z \in \mathbb{R}^d : \|z - v\|^2 + h \le \|z - v'\|^2 + h' \text{ for all } (v',h') \in \xi_f \}.$$

Let ξ_f be a PPP in $\mathbb{R}^d \times E$ where E is \mathbb{R} , $\mathbb{R}_{\geq 0}$ or $\mathbb{R}_{<0}$ with intensity measure

$$\mu(B \times A) = \int_{\mathbb{R}^d} \int_E \mathbf{1}\{v \in B\} \mathbf{1}\{h \in A\} f(h) dv dh.$$

Laguerre cell of $(v, h) \in \xi_f$:

$$V((v,h),\xi_f) := \{z \in \mathbb{R}^d : \|z - v\|^2 + h \le \|z - v'\|^2 + h' ext{ for all } (v',h') \in \xi_f \}.$$



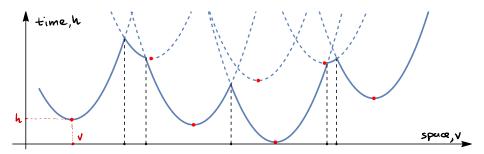
Let ξ_f be a PPP in $\mathbb{R}^d \times E$ where E is \mathbb{R} , $\mathbb{R}_{\geq 0}$ or $\mathbb{R}_{<0}$ with intensity measure

$$\mu(B \times A) = \int_{\mathbb{R}^d} \int_E \mathbf{1}\{v \in B\} \mathbf{1}\{h \in A\} f(h) dv dh.$$

Laguerre cell of $(v, h) \in \xi_f$:

$$V((v,h),\xi_f) := \{ z \in \mathbb{R}^d \colon \|z - v\|^2 + h \le \|z - v'\|^2 + h' \text{ for all } (v',h') \in \xi_f \}.$$

Laguerre tessellation: $\mathcal{L}_d(f) := \{ V((v,h),\xi_f) : (v,h) \in \xi_f, \operatorname{int} V((v,h),\xi_f) \neq \emptyset \}.$



Let ξ_f be a PPP in $\mathbb{R}^d \times E$ where E is \mathbb{R} , $\mathbb{R}_{\geq 0}$ or $\mathbb{R}_{<0}$ with intensity measure

$$\mu(B \times A) = \int_{\mathbb{R}^d} \int_E \mathbf{1}\{v \in B\} \mathbf{1}\{h \in A\} f(h) dv dh.$$

Laguerre cell of $(v, h) \in \xi_f$:

$$V((v,h),\xi_f) := \{z \in \mathbb{R}^d : \|z - v\|^2 + h \le \|z - v'\|^2 + h' ext{ for all } (v',h') \in \xi_f \}.$$

Laguerre tessellation: $\mathcal{L}_d(f) := \{ V((v, h), \xi_f) : (v, h) \in \xi_f, \operatorname{int} V((v, h), \xi_f) \neq \emptyset \}.$

Let ξ_f be a PPP in $\mathbb{R}^d \times E$ where E is \mathbb{R} , $\mathbb{R}_{\geq 0}$ or $\mathbb{R}_{<0}$ with intensity measure

$$\mu(B \times A) = \int_{\mathbb{R}^d} \int_E \mathbf{1}\{v \in B\} \mathbf{1}\{h \in A\} f(h) dv dh.$$

Laguerre cell of $(v, h) \in \xi_f$:

$$V((v,h),\xi_f) := \{z \in \mathbb{R}^d : \|z - v\|^2 + h \le \|z - v'\|^2 + h' \text{ for all } (v',h') \in \xi_f \}.$$

Laguerre tessellation: $\mathcal{L}_d(f) := \{V((v, h), \xi_f) : (v, h) \in \xi_f, \operatorname{int} V((v, h), \xi_f) \neq \emptyset\}.$ Fractional integral of f of order $\alpha > 0$ is:

$$(I^{\alpha}f)(t) := \Gamma(\alpha)^{-1} \int_{-\infty}^{t} f(x)(t-x)^{\alpha-1} \mathrm{d}x$$

Let ξ_f be a PPP in $\mathbb{R}^d \times E$ where E is \mathbb{R} , $\mathbb{R}_{\geq 0}$ or $\mathbb{R}_{<0}$ with intensity measure

$$\mu(B \times A) = \int_{\mathbb{R}^d} \int_E \mathbf{1}\{v \in B\} \mathbf{1}\{h \in A\} f(h) dv dh.$$

Laguerre cell of $(v, h) \in \xi_f$:

$$V((v,h),\xi_f) := \{z \in \mathbb{R}^d : \|z - v\|^2 + h \le \|z - v'\|^2 + h' \text{ for all } (v',h') \in \xi_f \}.$$

Laguerre tessellation: $\mathcal{L}_d(f) := \{V((v, h), \xi_f): (v, h) \in \xi_f, \operatorname{int} V((v, h), \xi_f) \neq \emptyset\}.$ Fractional integral of f of order $\alpha > 0$ is:

$$(I^{\alpha}f)(t) := \Gamma(\alpha)^{-1} \int_{-\infty}^{t} f(x)(t-x)^{\alpha-1} \mathrm{d}x$$

Theorem (A.G., M. in Wolde-Lübke, 2024+)

Let $f \in L^1_{\mathrm{loc}}(E)$ be such that $(I^{\frac{d}{2}+1}f)(t) < \infty$ for all $t \in E$

Let ξ_f be a PPP in $\mathbb{R}^d \times E$ where E is \mathbb{R} , $\mathbb{R}_{\geq 0}$ or $\mathbb{R}_{<0}$ with intensity measure

$$\mu(B \times A) = \int_{\mathbb{R}^d} \int_E \mathbf{1}\{v \in B\} \mathbf{1}\{h \in A\} f(h) dv dh.$$

Laguerre cell of $(v, h) \in \xi_f$:

$$V((v,h),\xi_f) := \{z \in \mathbb{R}^d : \|z - v\|^2 + h \le \|z - v'\|^2 + h' \text{ for all } (v',h') \in \xi_f \}.$$

Laguerre tessellation: $\mathcal{L}_d(f) := \{V((v, h), \xi_f) : (v, h) \in \xi_f, \operatorname{int} V((v, h), \xi_f) \neq \emptyset\}.$ Fractional integral of f of order $\alpha > 0$ is:

$$(I^{\alpha}f)(t) := \Gamma(\alpha)^{-1} \int_{-\infty}^{t} f(x)(t-x)^{\alpha-1} \mathrm{d}x$$

Theorem (A.G., M. in Wolde-Lübke, 2024+)

Let $f \in L^1_{loc}(E)$ be such that $(I^{\frac{d}{2}+1}f)(t) < \infty$ for all $t \in E$ and in case of $E = \mathbb{R}_{<0}$ we additionally assume that there is $\varepsilon > 0$ such that for sufficiently big $n \in \mathbb{N}$ we have $(I^{\frac{d}{2}+1}f)(-1/n) \ge n^{\varepsilon}$.

Let ξ_f be a PPP in $\mathbb{R}^d \times E$ where E is \mathbb{R} , $\mathbb{R}_{\geq 0}$ or $\mathbb{R}_{<0}$ with intensity measure

$$\mu(B \times A) = \int_{\mathbb{R}^d} \int_E \mathbf{1}\{v \in B\} \mathbf{1}\{h \in A\} f(h) dv dh.$$

Laguerre cell of $(v, h) \in \xi_f$:

$$V((v,h),\xi_f) := \{z \in \mathbb{R}^d : \|z - v\|^2 + h \le \|z - v'\|^2 + h' \text{ for all } (v',h') \in \xi_f \}.$$

Laguerre tessellation: $\mathcal{L}_d(f) := \{V((v, h), \xi_f) : (v, h) \in \xi_f, \operatorname{int} V((v, h), \xi_f) \neq \emptyset\}.$ Fractional integral of f of order $\alpha > 0$ is:

$$(I^{\alpha}f)(t) := \Gamma(\alpha)^{-1} \int_{-\infty}^{t} f(x)(t-x)^{\alpha-1} \mathrm{d}x$$

Theorem (A.G., M. in Wolde-Lübke, 2024+)

Let $f \in L^1_{loc}(E)$ be such that $(I^{\frac{d}{2}+1}f)(t) < \infty$ for all $t \in E$ and in case of $E = \mathbb{R}_{<0}$ we additionally assume that there is $\varepsilon > 0$ such that for sufficiently big $n \in \mathbb{N}$ we have $(I^{\frac{d}{2}+1}f)(-1/n) \ge n^{\varepsilon}$. Then

*L*_d(f) is a random face-to-face normal stationary tessellation;

► (L_d(f))^{*} is a random face-to-face simplicial stationary tessellation.

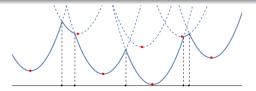
Fractional integral of f of order $\alpha > 0$ is:

$$(I^{\alpha}f)(t) := \Gamma(\alpha)^{-1} \int_{-\infty}^{t} f(x)(t-x)^{\alpha-1} \mathrm{d}x$$

Theorem (A.G., M. in Wolde-Lübke, 2024+)

Let $f \in L^1_{loc}(E)$ be such that $(I^{\frac{d}{2}+1}f)(t) < \infty$ for all $t \in E$ and in case of $E = \mathbb{R}_{<0}$ we additionally assume that there is $\varepsilon > 0$ such that for sufficiently big $n \in \mathbb{N}$ we have $(I^{\frac{d}{2}+1}f)(-1/n) \ge n^{\varepsilon}$. Then

- $\mathcal{L}_d(f)$ is a random face-to-face normal stationary tessellation;
- ► (L_d(f))* is a random face-to-face simplicial stationary tessellation.



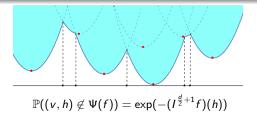
Fractional integral of f of order $\alpha > 0$ is:

$$(I^{\alpha}f)(t) := \Gamma(\alpha)^{-1} \int_{-\infty}^{t} f(x)(t-x)^{\alpha-1} \mathrm{d}x$$

Theorem (A.G., M. in Wolde-Lübke, 2024+)

Let $f \in L^1_{loc}(E)$ be such that $(I^{\frac{d}{2}+1}f)(t) < \infty$ for all $t \in E$ and in case of $E = \mathbb{R}_{<0}$ we additionally assume that there is $\varepsilon > 0$ such that for sufficiently big $n \in \mathbb{N}$ we have $(I^{\frac{d}{2}+1}f)(-1/n) \ge n^{\varepsilon}$. Then

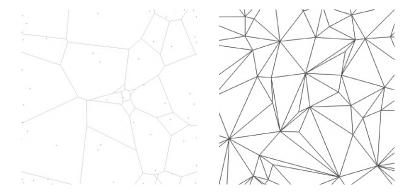
- $\mathcal{L}_d(f)$ is a random face-to-face normal stationary tessellation;
- ► (L_d(f))* is a random face-to-face simplicial stationary tessellation.



If f ∈ L¹(ℝ), then ξ_f is an independent marking of a homogeneous PPP on ℝ^d (Lautensack, Zuyev'08).

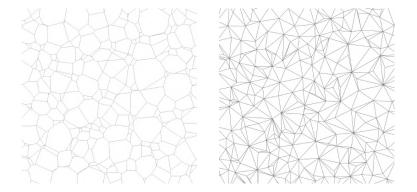
• Gaussian model: take $f(h) := e^h$

 $\widetilde{\mathcal{V}}_d := \mathcal{L}_d(f)$ is called Gaussian-Voronoi tessellation; $\widetilde{\mathcal{D}}_d := (\mathcal{L}_d(f))^*$ is called Gaussian-Delaunay tessellation.



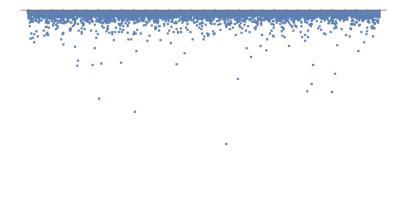
•
$$\beta$$
-model: $f(h) := c_{d,\beta} h^{\beta} \mathbf{1}_{h \ge 0}, \ \beta > -1$

 $\mathcal{V}_{d,\beta} = \mathcal{L}_d(f)$ is called β -Voronoi tessellation; $\mathcal{D}_{d,\beta} = (\mathcal{L}_d(f))^*$ is called β -Delaunay tessellation.



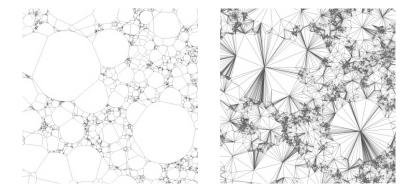
►
$$\beta'$$
-model: $f(h) = c'_{d,\beta} (-h)^{-\beta} \mathbf{1}_{h<0}, \ \beta > \beta_c(d) := (d+2)/2$

 $\begin{array}{l} \mathcal{V}_{d,\beta}' := \mathcal{L}_d(f) \text{ is called } \beta' \text{-Voronoi tessellation;} \\ \mathcal{D}_{d,\beta}' := (\mathcal{L}_d(f))^* \text{ is called } \beta' \text{-Delaunay tessellation.} \end{array}$



►
$$\beta'$$
-model: $f(h) = c'_{d,\beta} (-h)^{-\beta} \mathbf{1}_{h<0}, \ \beta > \beta_c(d) := (d+2)/2$

 $\begin{array}{l} \mathcal{V}_{d,\beta}' := \mathcal{L}_d(f) \text{ is called } \beta' \text{-Voronoi tessellation;} \\ \mathcal{D}_{d,\beta}' := (\mathcal{L}_d(f))^* \text{ is called } \beta' \text{-Delaunay tessellation.} \end{array}$



Question: Is sectional Poisson-Voronoi tessellation $\mathcal{V}_d \cap L_\ell$ a Voronoi tessellation? Answer: "The sectional Poisson-Voronoi tessellation is not a Voronoi tessellation" (Chiu, Van De Weygaert, Stoyan'96).

Answer: "The sectional Poisson-Voronoi tessellation is not a Voronoi tessellation" (Chiu, Van De Weygaert, Stoyan'96). It is β -Voronoi tessellation!

Answer: "The sectional Poisson-Voronoi tessellation is not a Voronoi tessellation" (Chiu, Van De Weygaert, Stoyan'96). It is β -Voronoi tessellation!

Theorem (A.G., Z. Kabluchko and C. Thäle, 2024)

For any $\ell\text{-dimensional}$ affine subspace L_ℓ we have

$$\mathcal{V}_d \cap L_\ell \stackrel{d}{=} \mathcal{V}_{\ell,-1+(d-\ell)/2}$$
 (up to isometry)

(here intensity of \mathcal{V}_d is chosen to be $\gamma = \pi^{\frac{d+1}{2}} / \Gamma(\frac{d+1}{2})$)

Answer: "The sectional Poisson-Voronoi tessellation is not a Voronoi tessellation" (Chiu, Van De Weygaert, Stoyan'96). It is β -Voronoi tessellation!

Theorem (A.G., Z. Kabluchko and C. Thäle, 2024)

For any $\ell\text{-dimensional}$ affine subspace L_ℓ we have

$$\mathcal{V}_d \cap L_\ell \stackrel{d}{=} \mathcal{V}_{\ell,-1+(d-\ell)/2}$$
 (up to isometry)

(here intensity of \mathcal{V}_d is chosen to be $\gamma = \pi^{\frac{d+1}{2}} / \Gamma(\frac{d+1}{2})$)

More generally:

Theorem (A.G. and M. in Wolde-Lübke, 2024+)

For any ℓ -dimensional affine subspace L_ℓ we have

$$\mathcal{L}_{d}(f) \cap L_{\ell} \stackrel{d}{=} \mathcal{L}_{\ell} \left(\pi^{\frac{d-\ell}{2}} (I^{\frac{d-\ell}{2}} f) \right)$$
 (up to isometry)

Answer: "The sectional Poisson-Voronoi tessellation is not a Voronoi tessellation" (Chiu, Van De Weygaert, Stoyan'96). It is β -Voronoi tessellation!

Theorem (A.G., Z. Kabluchko and C. Thäle, 2024)

For any $\ell\text{-dimensional}$ affine subspace L_ℓ we have

$$\mathcal{V}_d \cap L_\ell \stackrel{d}{=} \mathcal{V}_{\ell,-1+(d-\ell)/2}$$
 (up to isometry)

(here intensity of \mathcal{V}_d is chosen to be $\gamma = \pi^{\frac{d+1}{2}} / \Gamma(\frac{d+1}{2})$)

More generally:

Theorem (A.G. and M. in Wolde-Lübke, 2024+)

For any ℓ -dimensional affine subspace L_ℓ we have

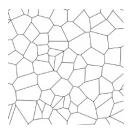
$$\mathcal{L}_{d}(f) \cap L_{\ell} \stackrel{d}{=} \mathcal{L}_{\ell} \left(\pi^{\frac{d-\ell}{2}} (I^{\frac{d-\ell}{2}} f) \right) \qquad (up \ to \ isometry)$$

As a corollary:

$$\mathcal{V}_{d,\beta} \cap L_{\ell} \stackrel{d}{=} \mathcal{V}_{\ell,\beta+(d-\ell)/2} \qquad \qquad \mathcal{V}'_{d,\beta} \cap L_{\ell} \stackrel{d}{=} \mathcal{V}'_{\ell,\beta-(d-\ell)/2} \qquad \qquad \widetilde{\mathcal{V}}_{d} \cap L_{\ell} \stackrel{d}{=} \widetilde{\mathcal{V}}_{\ell}$$

Anna Gusakova

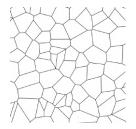
 \blacktriangleright T is a stationary random tessellation.



- \blacktriangleright T is a stationary random tessellation.
- ► *k*-cell intensity of *T*:

$$\gamma_k(\mathcal{T}) = \mathbb{E}\sum_{F \in \mathcal{F}_k(\mathcal{T})} \mathbf{1}\{z(F,\mathcal{T}) \in [0,1]^d\},$$

where $z : \{\text{polytopes}\} \times \{\text{tessellations}\} \mapsto \mathbb{R}^d$ be s.t. $z(t + x, \mathcal{T} + x) = z(t, \mathcal{T}) + x$ for all $x \in \mathbb{R}^d$.

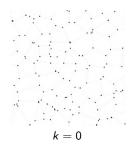


• T is a stationary random tessellation.

k-cell intensity of T:

$$\gamma_k(\mathcal{T}) = \mathbb{E}\sum_{F\in\mathcal{F}_k(\mathcal{T})} \mathbf{1}\{z(F,\mathcal{T})\in[0,1]^d\},$$

where $z : \{\text{polytopes}\} \times \{\text{tessellations}\} \mapsto \mathbb{R}^d \text{ be s.t.}$ $z(t + x, \mathcal{T} + x) = z(t, \mathcal{T}) + x \text{ for all } x \in \mathbb{R}^d.$



• T is a stationary random tessellation.

\blacktriangleright k-cell intensity of \mathcal{T} :

$$\gamma_k(\mathcal{T}) = \mathbb{E}\sum_{F\in\mathcal{F}_k(\mathcal{T})} \mathbf{1}\{z(F,\mathcal{T})\in[0,1]^d\},$$

where $z : \{\text{polytopes}\} \times \{\text{tessellations}\} \mapsto \mathbb{R}^d \text{ be s.t.}$ $z(t + x, \mathcal{T} + x) = z(t, \mathcal{T}) + x \text{ for all } x \in \mathbb{R}^d.$

- \blacktriangleright T is a stationary random tessellation.
- \blacktriangleright *k*-cell intensity of \mathcal{T} :

$$\gamma_k(\mathcal{T}) = \mathbb{E}\sum_{F\in\mathcal{F}_k(\mathcal{T})} \mathbf{1}\{z(F,\mathcal{T})\in[0,1]^d\}$$

where $z : \{\text{polytopes}\} \times \{\text{tessellations}\} \mapsto \mathbb{R}^d$ be s.t. $z(t + x, \mathcal{T} + x) = z(t, \mathcal{T}) + x$ for all $x \in \mathbb{R}^d$.

- \blacktriangleright T is a stationary random tessellation.
- \blacktriangleright k-cell intensity of \mathcal{T} :

$$\gamma_k(\mathcal{T}) = \mathbb{E}\sum_{F\in\mathcal{F}_k(\mathcal{T})} \mathbf{1}\{z(F,\mathcal{T})\in [0,1]^d\}$$

where
$$z : \{\text{polytopes}\} \times \{\text{tessellations}\} \mapsto \mathbb{R}^d \text{ be s.t.}$$

 $z(t + x, \mathcal{T} + x) = z(t, \mathcal{T}) + x \text{ for all } x \in \mathbb{R}^d.$



$$\mathbb{P}^{\mathrm{typ}}_{\mathcal{T}}(\cdot) = rac{1}{\gamma_d(\mathcal{T})} \mathbb{E} \sum_{t \in \mathcal{T} : \ z(t,\mathcal{T}) \in [0,1]^d} \mathbf{1} \{t - z(t,\mathcal{T}) \in \cdot \}.$$

For $\mathcal{L}_d(\xi)$ we choose v as a center of a cell $V((v, h), \xi)$ and for $(\mathcal{L}_d(\xi))^*$ as a center we choose a corresponding vertex of $\mathcal{L}_d(\xi)$.

- \blacktriangleright T is a stationary random tessellation.
- \blacktriangleright *k*-cell intensity of \mathcal{T} :

$$\gamma_k(\mathcal{T}) = \mathbb{E}\sum_{F\in\mathcal{F}_k(\mathcal{T})} \mathbf{1}\{z(F,\mathcal{T})\in [0,1]^d\}$$

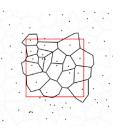
where
$$z : \{\text{polytopes}\} \times \{\text{tessellations}\} \mapsto \mathbb{R}^d \text{ be s.t.}$$

 $z(t + x, \mathcal{T} + x) = z(t, \mathcal{T}) + x \text{ for all } x \in \mathbb{R}^d.$

Typical cell of T: Z(T) is a random polytope with distribution

$$\mathbb{P}^{\mathrm{typ}}_{\mathcal{T}}(\cdot) = rac{1}{\gamma_d(\mathcal{T})} \mathbb{E} \sum_{t \in \mathcal{T} : \ z(t,\mathcal{T}) \in [0,1]^d} \mathbf{1} \{t - z(t,\mathcal{T}) \in \cdot\}.$$

For $\mathcal{L}_d(\xi)$ we choose v as a center of a cell $V((v, h), \xi)$ and for $(\mathcal{L}_d(\xi))^*$ as a center we choose a corresponding vertex of $\mathcal{L}_d(\xi)$.



Stochastic representation of the typical cell

Let \mathcal{T} be one of the following tessellations \mathcal{D}_d , $\mathcal{D}_{d,\beta}$, $\mathcal{D}'_{d,\beta}$, $\widetilde{\mathcal{D}}_d$.

Stochastic representation of the typical cell

Let \mathcal{T} be one of the following tessellations \mathcal{D}_d , $\mathcal{D}_{d,\beta}$, $\mathcal{D}'_{d,\beta}$, $\widetilde{\mathcal{D}}_d$.

Theorem (A.G., Z. Kabluchko and C.Thäle, 2022)

We have $Z(\mathcal{T}) \stackrel{d}{=} R \cdot \operatorname{conv}(Y_1, \ldots, Y_{d+1}) := \operatorname{conv}(RY_1, \ldots, RY_{d+1});$ (a) (Y_1, \ldots, Y_{d+1}) are random points, whose joint distribution is

$$const \cdot Vol(conv(y_1, \ldots, y_{d+1})) \prod_{i=1}^{d+1} F(dy_i);$$

(b) *R* is a random variable on (0,∞) with distribution *G*;
(c) *R* is independent of (Y₁,..., Y_{d+1}),

Stochastic representation of the typical cell

Let \mathcal{T} be one of the following tessellations \mathcal{D}_d , $\mathcal{D}_{d,\beta}$, $\mathcal{D}'_{d,\beta}$, $\widetilde{\mathcal{D}}_d$.

Theorem (A.G., Z. Kabluchko and C.Thäle, 2022)

We have
$$Z(\mathcal{T}) \stackrel{d}{=} R \cdot \operatorname{conv}(Y_1, \dots, Y_{d+1}) := \operatorname{conv}(RY_1, \dots, RY_{d+1});$$

(a) (Y_1, \dots, Y_{d+1}) are random points, whose joint distribution is

$$const \cdot Vol(conv(y_1, \ldots, y_{d+1})) \prod_{i=1}^{d+1} F(dy_i);$$

(b) *R* is a random variable on (0,∞) with distribution *G*;
(c) *R* is independent of (Y₁,..., Y_{d+1}),
where

$$\begin{split} F &= \text{Unif}(\mathbb{S}^{d-1}), & G(\mathrm{d}r) = r^{d^2 - 1} e^{-c \cdot r^d} \mathrm{d}r, & \mathcal{T} = \mathcal{D}_d; \\ F(\mathrm{d}x) &= c_{d,\beta} (1 - \|x\|^2)^\beta \mathbf{1}_{\mathbb{B}^d}(\|x\|) \mathrm{d}x, & G(\mathrm{d}r) = r^{(d+1)^2 + 2(d+1)\beta} e^{-c \cdot r^{d+2+2\beta}} \mathrm{d}r, & \mathcal{T} = \mathcal{D}_{d,\beta}; \\ F(\mathrm{d}x) &= c_{d,\beta}' (1 + \|x\|^2)^{-\beta} \mathrm{d}x, & G(\mathrm{d}r) = r^{(d+1)^2 - 2(d+1)\beta} e^{-c \cdot r^{d+2-2\beta}} \mathrm{d}r & \mathcal{T} = \mathcal{D}_{d,\beta}; \\ F(\mathrm{d}x) &= (2\pi)^{-d/2} e^{-\|x\|^2/2} \mathrm{d}x, & G = \delta_1, & \mathcal{T} = \widetilde{\mathcal{D}}_d. \end{split}$$

Stochastic representation of the typical cell

Let \mathcal{T} be one of the following tessellations \mathcal{D}_d , $\mathcal{D}_{d,\beta}$, $\mathcal{D}'_{d,\beta}$, $\widetilde{\mathcal{D}}_d$.

Theorem (A.G., Z. Kabluchko and C.Thäle, 2022)

We have $Z(\mathcal{T}) \stackrel{d}{=} R \cdot \operatorname{conv}(Y_1, \ldots, Y_{d+1}) := \operatorname{conv}(RY_1, \ldots, RY_{d+1});$ (a) (Y_1, \ldots, Y_{d+1}) are random points, whose joint distribution is

$$const \cdot Vol(conv(y_1, \ldots, y_{d+1})) \prod_{i=1}^{d+1} F(dy_i);$$

(b) *R* is a random variable on (0,∞) with distribution *G*;
(c) *R* is independent of (Y₁,..., Y_{d+1}),
where

$$F = \text{Unif}(\mathbb{S}^{d-1}), \qquad \qquad G(\mathrm{d} r) = r^{d^2 - 1} e^{-c \cdot r^d} \mathrm{d} r, \qquad \qquad \mathcal{T} = \mathcal{D}_d;$$

Remark

Case of Poisson-Delaunay tessellation $\mathcal{T} = \mathcal{D}_d$ is well-know (Miles'74, Møller'94).

Anna Gusakova

Combining combinatorial relations between different characteristics of stationary random tessellation and properties of β -random simplices we also get:

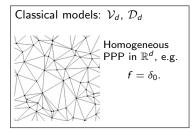
Theorem (A.G., Z. Kabluchko and C. Thäle, 2024)

For any $0 \le j \le d$ we have

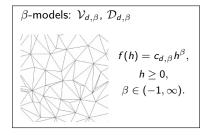
$$\mathbb{E}V_{j}(Z(\mathcal{V}_{d})) = \left(\frac{\gamma}{\Gamma(\frac{d}{2}+1)}\right)^{-\frac{j}{d}} \frac{(d-j+1)(d-1)+1}{\sqrt{\pi}d(d-j)!} \frac{\Gamma(d-j+\frac{j}{d})}{\Gamma(\frac{j+1}{2})} \\ \times \int_{-\infty}^{\infty} (\cosh u)^{-(d-j+1)(d-1)-2} \left[\frac{\sqrt{\pi}\Gamma(\frac{d}{2}+1)}{\Gamma(\frac{d+1}{2})} + di \int_{0}^{u} (\cosh v)^{d-1} dv\right]^{d-j} du.$$

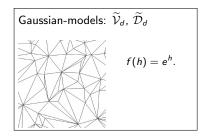
 V_j is *j*-th intrinsic volume, in particular V_d is the volume and $\frac{1}{2}V_{d-1}$ is the surface area.

Connection between the models

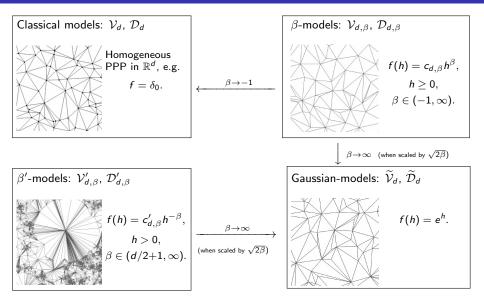


$$\begin{array}{l} \beta'\text{-models: }\mathcal{V}_{d,\beta}', \ \mathcal{D}_{d,\beta}'\\\\ \hline\\ f(h)=c_{d,\beta}'h^{-\beta},\\\\ h>0,\\\\ \beta\in(d/2+1,\infty). \end{array}$$

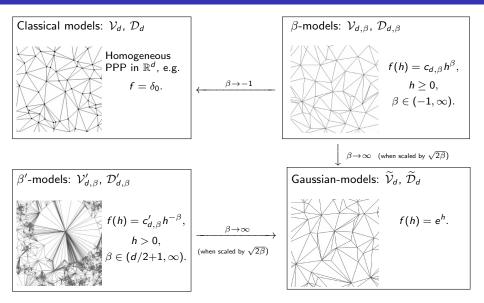




Connection between the models



Connection between the models (convergence of typical cells)



Connection between the models (convergence in a stronger sense)

Consider the skeleton of a stationary random tessellation \mathcal{T} :

$$\mathsf{skel}(\mathcal{T}) := \bigcup_{t \in \mathcal{T}} \mathsf{bd} t,$$

which is a stationary random closed set.

Connection between the models (convergence in a stronger sense)

Consider the skeleton of a stationary random tessellation \mathcal{T} :

$$\mathsf{skel}(\mathcal{T}) := igcup_{t\in\mathcal{T}} \mathsf{bd} \ t,$$

which is a stationary random closed set. Set:

$$\begin{split} \mathscr{D}_{d,eta} &:= \mathsf{skel}(\sqrt{2\beta}\,\mathcal{D}_{d,eta}), eta > 0 \ \mathscr{D}_{d,eta}' &:= \mathsf{skel}(\sqrt{2\beta}\,\mathcal{D}_{d,eta}') \ \widetilde{\mathscr{D}}_{d} &:= \mathsf{skel}(\widetilde{\mathcal{D}}_{d}) \end{split}$$

Connection between the models (convergence in a stronger sense)

Consider the skeleton of a stationary random tessellation \mathcal{T} :

$$\mathsf{skel}(\mathcal{T}) := igcup_{t\in\mathcal{T}} \mathsf{bd} \ t,$$

which is a stationary random closed set. Set:

$$\begin{split} \mathscr{D}_{d,\beta} &:= \mathsf{skel}(\sqrt{2\beta}\,\mathcal{D}_{d,\beta}), \beta > 0\\ \mathscr{D}'_{d,\beta} &:= \mathsf{skel}(\sqrt{2\beta}\,\mathcal{D}'_{d,\beta})\\ &\widetilde{\mathscr{D}}_d &:= \mathsf{skel}(\widetilde{\mathcal{D}}_d) \end{split}$$

Theorem (A.G., Z. Kabluchko and C.Thäle, 2022)

 $\mathscr{D}_{d,\beta}$ and $\mathscr{D}'_{d,\beta}$ converge weakly to $\widetilde{\mathscr{D}}_d$ as $\beta \to \infty$.

Consider the skeleton of a stationary random tessellation \mathcal{T} :

$$\mathsf{skel}(\mathcal{T}) := igcup_{t\in\mathcal{T}} \mathsf{bd} \ t,$$

which is a stationary random closed set. Set:

$$\begin{split} \mathscr{D}_{d,\beta} &:= \mathsf{skel}(\sqrt{2\beta}\,\mathcal{D}_{d,\beta}), \beta > 0\\ \mathscr{D}'_{d,\beta} &:= \mathsf{skel}(\sqrt{2\beta}\,\mathcal{D}'_{d,\beta})\\ &\widetilde{\mathscr{D}}_{d} &:= \mathsf{skel}(\widetilde{\mathcal{D}}_{d}) \end{split}$$

Theorem (A.G., Z. Kabluchko and C.Thäle, 2022)

 $\mathscr{D}_{d,\beta}$ and $\mathscr{D}'_{d,\beta}$ converge weakly to $\widetilde{\mathscr{D}}_d$ as $\beta \to \infty$.

Work in progress (with M. in Wolde-Lübke): skel($\mathcal{D}_{d,\beta}$) \xrightarrow{d} skel(\mathcal{D}_d) as $\beta \to -1$.

Consider the skeleton of a stationary random tessellation \mathcal{T} :

$$\mathsf{skel}(\mathcal{T}) := igcup_{t\in\mathcal{T}} \mathsf{bd} \ t,$$

which is a stationary random closed set. Set:

$$\begin{split} \mathscr{D}_{d,eta} &:= \mathsf{skel}(\sqrt{2\beta}\,\mathcal{D}_{d,eta}), eta > 0 \ \mathscr{D}_{d,eta} &:= \mathsf{skel}(\sqrt{2\beta}\,\mathcal{D}_{d,eta}') \ \widetilde{\mathscr{D}}_{d} &:= \mathsf{skel}(\widetilde{\mathcal{D}}_{d}) \end{split}$$

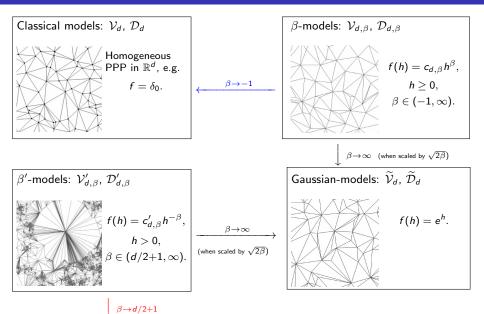
Theorem (A.G., Z. Kabluchko and C.Thäle, 2022)

 $\mathscr{D}_{d,\beta}$ and $\mathscr{D}'_{d,\beta}$ converge weakly to $\widetilde{\mathscr{D}}_d$ as $\beta \to \infty$.

Work in progress (with M. in Wolde-Lübke): skel($\mathcal{D}_{d,\beta}$) \xrightarrow{d} skel(\mathcal{D}_d) as $\beta \to -1$.

Remark: If it holds we could formally write $\mathcal{D}_{d,-1} := \mathcal{D}_d$ and allow $\beta \ge -1$ in β -model.

Connection between the models (convergence of skeletons)



Anna Gusakova

Fisher-Tippett-Gnedenko theorem: Let $X_1, X_2, ...$ be the sequence of i.i.d. random variables and let $M_n = \max_{1 \le i \le n} X_i$. Suppose there are $a_n > 0$, $b_n \in \mathbb{R}$, s.t.

$$\lim_{n\to\infty}\mathbb{P}((M_n-b_n)\leq a_nx)=G(x),$$

for some non-degenerate distribution function G. Then G (after proper renormalization) is one of the following extreme value distributions

- Weibull distribution: $\Psi_{\beta}(t) = \exp(-(-t)^{\beta}), t < 0, \beta > 0;$
- Fréchet distribution: $\Phi_{\beta}(t) = \exp(-t^{-\beta}), t > 0, \beta > 0;$
- **Gumbel distribution:** $\Lambda(t) = \exp(-e^{-t})$.

Fisher-Tippett-Gnedenko theorem: Let $X_1, X_2, ...$ be the sequence of i.i.d. random variables and let $M_n = \max_{1 \le i \le n} X_i$. Suppose there are $a_n > 0$, $b_n \in \mathbb{R}$, s.t.

$$\lim_{n\to\infty}\mathbb{P}((M_n-b_n)\leq a_nx)=G(x),$$

for some non-degenerate distribution function G. Then G (after proper renormalization) is one of the following extreme value distributions

- Weibull distribution: $\Psi_{\beta}(t) = \exp(-(-t)^{\beta})$, t < 0, $\beta > 0$;
- Fréchet distribution: $\Phi_{\beta}(t) = \exp(-t^{-\beta}), t > 0, \beta > 0;$
- **Gumbel distribution:** $\Lambda(t) = \exp(-e^{-t})$.

Question: What are the high-dimensional settings?

Question: What makes then β -, β' - and Gaussian models so special?

Question: What are the high-dimensional settings?

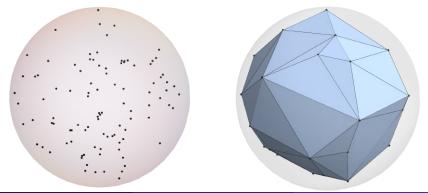
Let X_1, X_2, \ldots be i.i.d. random points in \mathbb{R}^d , whose distribution is rotationally invariant.



Question: What makes then β -, β' - and Gaussian models so special?

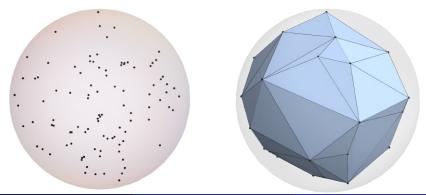
Question: What are the high-dimensional settings?

Let X_1, X_2, \ldots be i.i.d. random points in \mathbb{R}^d , whose distribution is rotationally invariant. Natural high-dimensional analogue of maximum is the convex hull $conv(X_1, \ldots, X_n)$.



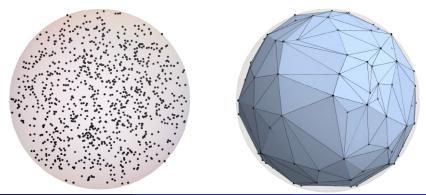
Question: What makes then β -, β' - and Gaussian models so special?

Question: What are the high-dimensional settings?



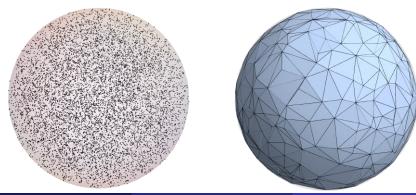
Question: What makes then β -, β' - and Gaussian models so special?

Question: What are the high-dimensional settings?



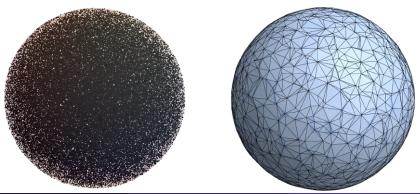
Question: What makes then β -, β' - and Gaussian models so special?

Question: What are the high-dimensional settings?



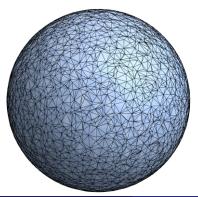
Question: What makes then β -, β' - and Gaussian models so special?

Question: What are the high-dimensional settings?



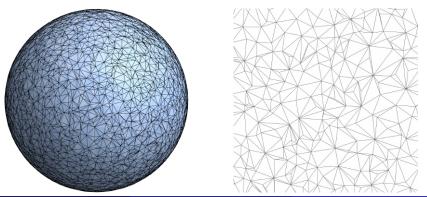
Question: What makes then β -, β' - and Gaussian models so special?

Question: What are the high-dimensional settings?



Question: What makes then β -, β' - and Gaussian models so special?

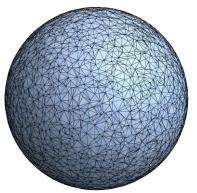
Question: What are the high-dimensional settings?

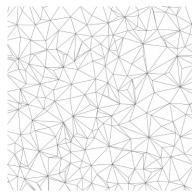


Question: What are the high-dimensional settings?

Let X_1, X_2, \ldots be i.i.d. random points in \mathbb{R}^d , whose distribution is rotationally invariant. Natural high-dimensional analogue of maximum is the convex hull $conv(X_1, \ldots, X_n)$.

Next question: What do we see when $n \to \infty$? After "projection" and proper rescaling boundary of convex hull is expected to converge to a tessellation.





Question: What are the high-dimensional settings?

Let X_1, X_2, \ldots be i.i.d. random points in \mathbb{R}^d , whose distribution is rotationally invariant. Natural high-dimensional analogue of maximum is the convex hull $\operatorname{conv}(X_1, \ldots, X_n)$.

Next question: What do we see when $n \to \infty$? After "projection" and proper rescaling boundary of convex hull is expected to converge to a tessellation.

Which kind of tessellation?

Question: What are the high-dimensional settings?

Let X_1, X_2, \ldots be i.i.d. random points in \mathbb{R}^d , whose distribution is rotationally invariant. Natural high-dimensional analogue of maximum is the convex hull $\operatorname{conv}(X_1, \ldots, X_n)$.

Next question: What do we see when $n \to \infty$? After "projection" and proper rescaling boundary of convex hull is expected to converge to a tessellation.

Which kind of tessellation?

Extreme value theory distributions	Tessellation $(\mathcal{L}(f))^*$
(CDF is of the form $F(t) = \exp(-g(t))$)	
Weibull: $g(t) = (-t)^{\beta}$, $t \le 0$ Fréchet: $g(t) = t^{-\beta}$, $t > 0$ Gumbel: $g(t) = e^{-t}$	$β$ -Delaunay: $f(h) = h^β$, $h ≥ 0$ $β'$ -Delaunay: $f(h) = (-h)^{-β}$, $h < 0$ Gaussian-Delaunay: $f(h) = e^h$

• Given a stationary face-to-face random tessellation \mathcal{T} denote by $X_{\mathcal{T},k}$ the stationary point process of k-dimensional faces of \mathcal{T} , e.g.

$$\mathcal{T}^{(k)} := \sum_{F \in \mathcal{F}_k(\mathcal{T})} \delta_{c(F)}, \quad 0 \leq k \leq d-1,$$

where c(P) is lexicographically smallest vertex of polytope P.

• Given a stationary face-to-face random tessellation \mathcal{T} denote by $X_{\mathcal{T},k}$ the stationary point process of k-dimensional faces of \mathcal{T} , e.g.

$$\mathcal{T}^{(k)} := \sum_{F \in \mathcal{F}_k(\mathcal{T})} \delta_{c(F)}, \quad 0 \leq k \leq d-1,$$

where c(P) is lexicographically smallest vertex of polytope P.

• Let $I_n := [-n, n]^d$ and denote $\mathcal{T}_n^{(k)} := \mathcal{T}^{(k)}(I_n)$. Note $\mathbb{E}\mathcal{T}_n^{(k)} = \gamma_k(\mathcal{T})(2n)^d$.

• Given a stationary face-to-face random tessellation \mathcal{T} denote by $X_{\mathcal{T},k}$ the stationary point process of k-dimensional faces of \mathcal{T} , e.g.

$$\mathcal{T}^{(k)} := \sum_{F \in \mathcal{F}_k(\mathcal{T})} \delta_{c(F)}, \quad 0 \leq k \leq d-1,$$

where c(P) is lexicographically smallest vertex of polytope P.

▶ Let $I_n := [-n, n]^d$ and denote $\mathcal{T}_n^{(k)} := \mathcal{T}^{(k)}(I_n)$. Note $\mathbb{E}\mathcal{T}_n^{(k)} = \gamma_k(\mathcal{T})(2n)^d$.

Theorem (A.G., Z. Kabluchko and C. Thäle, 2022)

Let \mathcal{T} be one of the tessellations $\mathcal{D}_{d,\beta}$ for $\beta > -1$ or $\widetilde{\mathcal{D}}_d$, then the limit $s_k^2 := \lim_{n \to \infty} (2n)^{-d} [\operatorname{var} \mathcal{T}_n^{(k)}] > 0$ exists and

$$rac{\mathcal{T}_n^{(k)}-\gamma_k(\mathcal{T})(2n)^d}{(2n)^{rac{d}{2}}} \stackrel{d}{\longrightarrow} G \sim \mathcal{N}(0,s_k^2) ext{ as } n o \infty.$$

• Given a stationary face-to-face random tessellation \mathcal{T} denote by $X_{\mathcal{T},k}$ the stationary point process of k-dimensional faces of \mathcal{T} , e.g.

$$\mathcal{T}^{(k)} := \sum_{F \in \mathcal{F}_k(\mathcal{T})} \delta_{c(F)}, \quad 0 \leq k \leq d-1,$$

where c(P) is lexicographically smallest vertex of polytope P.

▶ Let $I_n := [-n, n]^d$ and denote $\mathcal{T}_n^{(k)} := \mathcal{T}^{(k)}(I_n)$. Note $\mathbb{E}\mathcal{T}_n^{(k)} = \gamma_k(\mathcal{T})(2n)^d$.

Theorem (A.G., Z. Kabluchko and C.Thäle, 2022)

Let \mathcal{T} be one of the tessellations $\mathcal{D}_{d,\beta}$ for $\beta > -1$ or $\widetilde{\mathcal{D}}_d$, then the limit $s_k^2 := \lim_{n \to \infty} (2n)^{-d} [\operatorname{var} \mathcal{T}_n^{(k)}] > 0$ exists and

$$rac{\mathcal{T}_n^{(k)}-\gamma_k(\mathcal{T})(2n)^d}{(2n)^{rac{d}{2}}} \stackrel{d}{\longrightarrow} G \sim \mathcal{N}(0,s_k^2) ext{ as } n o \infty.$$

Values $\gamma_k(\mathcal{D}_{d,\beta})$ and $\gamma_k(\widetilde{\mathcal{D}}_d)$ can be written down explicitly.

• Given a stationary face-to-face random tessellation \mathcal{T} denote by $X_{\mathcal{T},k}$ the stationary point process of k-dimensional faces of \mathcal{T} , e.g.

$$\mathcal{T}^{(k)} := \sum_{F \in \mathcal{F}_k(\mathcal{T})} \delta_{c(F)}, \quad 0 \leq k \leq d-1,$$

where c(P) is lexicographically smallest vertex of polytope P.

▶ Let $I_n := [-n, n]^d$ and denote $\mathcal{T}_n^{(k)} := \mathcal{T}^{(k)}(I_n)$. Note $\mathbb{E}\mathcal{T}_n^{(k)} = \gamma_k(\mathcal{T})(2n)^d$.

Theorem (A.G., Z. Kabluchko and C.Thäle, 2022)

Let \mathcal{T} be one of the tessellations $\mathcal{D}_{d,\beta}$ for $\beta > -1$ or $\widetilde{\mathcal{D}}_d$, then the limit $s_k^2 := \lim_{n \to \infty} (2n)^{-d} [\operatorname{var} \mathcal{T}_n^{(k)}] > 0$ exists and

$$rac{\mathcal{T}_n^{(k)}-\gamma_k(\mathcal{T})(2n)^d}{(2n)^{rac{d}{2}}} \stackrel{d}{\longrightarrow} G \sim \mathcal{N}(0,s_k^2) ext{ as } n o \infty.$$

Values $\gamma_k(\mathcal{D}_{d,\beta})$ and $\gamma_k(\widetilde{\mathcal{D}}_d)$ can be written down explicitly.

Open question: Is there CLT for $\mathcal{D}'_{d,\beta}$ (especially when $\beta \approx d/2 + 1$)?

Thank you for attention!